Flume
1. 前言
flume是由cloudera软件公司产出的可分布式日志收集系统,后与2009年被捐赠了apache软件基金会,为hadoop相关组件之一。尤其近几年随着flume的不断被完善以及升级版本的逐一推出,特别是flume-ng;同时flume内部的各种组件不断丰富,用户在开发的过程中使用的便利性得到很大的改善,现已成为apache top项目之一.
2. 概述
2.1. 什么是flume?
http://flume.apache.org/index.html
Apache Flume 是一个从可以收集例如日志,事件等数据资源,并将这些数量庞大的数据从各项数据资源中集中起来存储的工具/服务,或者数集中机制。flume具有高可用,分布式,配置工具,其设计的原理也是基于将数据流,如日志数据从各种网站服务器上汇集起来存储到HDFS,HBase等集中存储器中。其结构如下图所示:
2.2. Flume特性
- Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
- Flume可以采集文件,socket数据包、文件、文件夹、kafka等各种形式源数据,又可以将采集到的数据(下沉sink)输出到HDFS、hbase、hive、kafka等众多外部存储系统中
- 一般的采集需求,通过对flume的简单配置即可实现
- Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景
3. Flume原理
3.1. Flume组件详解
对于每一个Agent来说,它就是一共独立的守护进程(JVM),它从客户端接收数据,如下图所示flume的基本模型
1、 Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成
2、 每一个agent相当于一个数据(被封装成Event对象)传递员,内部有三个组件:
a) Source:采集组件,用于跟数据源对接,以获取数据
b) Sink:下沉组件,用于往下一级agent传递数据或者往最终存储系统传递数据
c) Channel:传输通道组件,用于从source将数据传递到sink
首先来看一下flume官网中对Event的定义
一行文本内容会被反序列化成一个event(序列化是将对象状态转换为可保持或传输的格式的过程。与序列化相对的是反序列化,它将流转换为对象。这两个过程结合起来,可以轻松地存储和传输数据),event的最大定义为2048字节,超过,则会切割,剩下的会被放到下一个event中,默认编码是UTF-8。
3.2. Flume采集结构图
3.2.1. 简单结构
单个agent采集数据
3.2.2. 复杂结构
多级agent之间串联
4. Flume实战案例
4.1. Flume的安装部署
1、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境
上传安装包到数据源所在节点上
然后解压 tar -zxvf apache-flume-1.6.0-bin.tar.gz
然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME
2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
3、指定采集方案配置文件,在相应的节点上启动flume agent
先用一个最简单的例子来测试一下程序环境是否正常
1、先在flume的conf目录下新建一个配置文件(采集方案)
vi netcat-logger.properties
# 定义这个agent中各组件的名字 a1.sources = r1 a1.sinks = k1 a1.channels = c1 # 描述和配置source组件:r1 a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # 描述和配置sink组件:k1 a1.sinks.k1.type = logger # 描述和配置channel组件,此处使用是内存缓存的方式 a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # 描述和配置source channel sink之间的连接关系 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
2、启动agent去采集数据
bin/bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console |
-c conf 指定flume自身的配置文件所在目录
-f conf/netcat-logger.conf 指定我们所描述的采集方案
-n a1 指定我们这个agent的名字
3、测试
先要往agent的source所监听的端口上发送数据,让agent有数据可采
随便在一个能跟agent节点联网的机器上
telnet anget-hostname port (telnet localhost 44444)
4.2. 采集案例
4.2.1. 采集目录到HDFS
结构示意图:
采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
根据需求,首先定义以下3大要素
l 数据源组件,即source ——监控文件目录 : spooldir
spooldir特性:
1、监视一个目录,只要目录中出现新文件,就会采集文件中的内容
2、采集完成的文件,会被agent自动添加一个后缀:COMPLETED
3、所监视的目录中不允许重复出现相同文件名的文件
l 下沉组件,即sink——HDFS文件系统 : hdfs sink
l 通道组件,即channel——可用file channel 也可以用内存channel
配置文件编写:
#定义三大组件的名称 agent1.sources = source1 agent1.sinks = sink1 agent1.channels = channel1 # 配置source组件 agent1.sources.source1.type = spooldir agent1.sources.source1.spoolDir = /home/hadoop/logs/ agent1.sources.source1.fileHeader = false #配置拦截器 agent1.sources.source1.interceptors = i1 agent1.sources.source1.interceptors.i1.type = host agent1.sources.source1.interceptors.i1.hostHeader = hostname # 配置sink组件 agent1.sinks.sink1.type = hdfs agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M agent1.sinks.sink1.hdfs.filePrefix = access_log agent1.sinks.sink1.hdfs.maxOpenFiles = 5000 agent1.sinks.sink1.hdfs.batchSize= 100 agent1.sinks.sink1.hdfs.fileType = DataStream agent1.sinks.sink1.hdfs.writeFormat =Text agent1.sinks.sink1.hdfs.rollSize = 102400 agent1.sinks.sink1.hdfs.rollCount = 1000000 agent1.sinks.sink1.hdfs.rollInterval = 60 #agent1.sinks.sink1.hdfs.round = true #agent1.sinks.sink1.hdfs.roundValue = 10 #agent1.sinks.sink1.hdfs.roundUnit = minute agent1.sinks.sink1.hdfs.useLocalTimeStamp = true # Use a channel which buffers events in memory agent1.channels.channel1.type = memory agent1.channels.channel1.keep-alive = 120 agent1.channels.channel1.capacity = 500000 agent1.channels.channel1.transactionCapacity = 600 # Bind the source and sink to the channel agent1.sources.source1.channels = channel1 agent1.sinks.sink1.channel = channel1
Channel参数解释:
capacity:默认该通道中最大的可以存储的event数量
trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量
keep-alive:event添加到通道中或者移出的允许时间
4.2.2. 采集文件到HDFS
采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs
根据需求,首先定义以下3大要素
- 采集源,即source——监控文件内容更新 : exec ‘tail -F file’
- 下沉目标,即sink——HDFS文件系统 : hdfs sink
- Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel
配置文件编写:
agent1.sources = source1 agent1.sinks = sink1 agent1.channels = channel1 # Describe/configure tail -F source1 agent1.sources.source1.type = exec agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log agent1.sources.source1.channels = channel1 #configure host for source agent1.sources.source1.interceptors = i1 agent1.sources.source1.interceptors.i1.type = host agent1.sources.source1.interceptors.i1.hostHeader = hostname # Describe sink1 agent1.sinks.sink1.type = hdfs #a1.sinks.k1.channel = c1 agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M agent1.sinks.sink1.hdfs.filePrefix = access_log agent1.sinks.sink1.hdfs.maxOpenFiles = 5000 agent1.sinks.sink1.hdfs.batchSize= 100 agent1.sinks.sink1.hdfs.fileType = DataStream agent1.sinks.sink1.hdfs.writeFormat =Text agent1.sinks.sink1.hdfs.rollSize = 102400 agent1.sinks.sink1.hdfs.rollCount = 1000000 agent1.sinks.sink1.hdfs.rollInterval = 60 agent1.sinks.sink1.hdfs.round = true agent1.sinks.sink1.hdfs.roundValue = 10 agent1.sinks.sink1.hdfs.roundUnit = minute agent1.sinks.sink1.hdfs.useLocalTimeStamp = true # Use a channel which buffers events in memory agent1.channels.channel1.type = memory agent1.channels.channel1.keep-alive = 120 agent1.channels.channel1.capacity = 500000 agent1.channels.channel1.transactionCapacity = 600 # Bind the source and sink to the channel agent1.sources.source1.channels = channel1 agent1.sinks.sink1.channel = channel1
3、两个agent级联
4.3. 更多source和sink组件
Flume支持众多的source和sink类型,详细手册可参考官方文档
http://flume.apache.org/FlumeUserGuide.html
4.4. HA Flume配置案例
在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:
图中,我们可以看出,Flume的存储可以支持多种,这里只列举了HDFS和Kafka(如:存储最新的一周日志,并给Spark Streaming系统提供实时日志流。
4.4.1. 角色分配
Flume的Agent和Collector分布如下表所示:
名称 |
HOST |
角色 |
Agent1 |
mini1 |
Web Server |
Agent2 |
mini2 |
Web Server |
Agent3 |
mini3 |
Web Server |
Collector1 |
mini4 |
AgentMstr1 |
Collector2 |
mini5 |
AgentMstr2 |
图中所示,Agent1,Agent2,Agent3数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。在上图中,有3个产生日志服务器分布在不同的机房,要把所有的日志都收集到一个集群中存储。下面我们开发配置Flume NG集群。
4.4.2. 配置
在下面单点Flume中,基本配置都完成了,我们只需要新添加两个配置文件,它们是agent.properties和collector.properties,其配置内容如下所示:
1、agent配置
vi conf/agent.properties
#agent1 name agent1.channels = c1 agent1.sources = r1 agent1.sinks = k1 k2 #set gruop agent1.sinkgroups = g1 #set channel agent1.channels.c1.type = memory agent1.channels.c1.capacity = 1000 agent1.channels.c1.transactionCapacity = 100 agent1.sources.r1.channels = c1 agent1.sources.r1.type = exec agent1.sources.r1.command = tail -F /root/log/test.log agent1.sources.r1.interceptors = i1 i2 agent1.sources.r1.interceptors.i1.type = static agent1.sources.r1.interceptors.i1.key = Type agent1.sources.r1.interceptors.i1.value = LOGIN agent1.sources.r1.interceptors.i2.type = timestamp # set sink1 agent1.sinks.k1.channel = c1 agent1.sinks.k1.type = avro agent1.sinks.k1.hostname = mini2 agent1.sinks.k1.port = 52020 # set sink2 agent1.sinks.k2.channel = c1 agent1.sinks.k2.type = avro agent1.sinks.k2.hostname = mini3 agent1.sinks.k2.port = 52020 #set sink group agent1.sinkgroups.g1.sinks = k1 k2 #set failover agent1.sinkgroups.g1.processor.type = failover agent1.sinkgroups.g1.processor.priority.k1 = 10 agent1.sinkgroups.g1.processor.priority.k2 = 1 agent1.sinkgroups.g1.processor.maxpenalty = 10000
启动命令:
bin/flume-ng agent -n agent1 -c conf -f conf/agent.properties -Dflume.root.logger=DEBUG,console
2、collector配置
vi collector.properties
#set Agent name a1.sources = r1 a1.channels = c1 a1.sinks = k1 #set channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # other node,nna to nns a1.sources.r1.type = avro a1.sources.r1.bind = mini2 a1.sources.r1.port = 52020 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = Collector a1.sources.r1.interceptors.i1.value = mini2 a1.sources.r1.channels = c1 #set sink to hdfs a1.sinks.k1.type=hdfs a1.sinks.k1.hdfs.path=/home/hdfs/flume/logdfs a1.sinks.k1.hdfs.fileType=DataStream a1.sinks.k1.hdfs.writeFormat=TEXT a1.sinks.k1.hdfs.rollInterval=10 a1.sinks.k1.channel=c1 a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d
在mini3上,需要修改上述配置中的红色字体主机名为mini3
启动命令:
bin/flume-ng agent -n a1 -c conf -f conf/collector.properties -Dflume.root.logger=DEBUG,console
4.4.3. FAILOVER测试
下面我们来测试下Flume NG集群的高可用(故障转移)。场景如下:我们在Agent1节点上传文件,由于我们配置Collector1的权重比Collector2大,所以 Collector1优先采集并上传到存储系统。然后我们kill掉Collector1,此时有Collector2负责日志的采集上传工作,之后,我 们手动恢复Collector1节点的Flume服务,再次在Agent1上次文件,发现Collector1恢复优先级别的采集工作。具体截图如下所 示:
Collector1优先上传
HDFS集群中上传的log内容预览
Collector1宕机,Collector2获取优先上传权限
重启Collector1服务,Collector1重新获得优先上传的权限
原文地址:https://www.cnblogs.com/lq0310/p/9855174.html