hdu 4940 无源汇有上下界最大流

题意:给出一个有向强连通图,每条边有两个值分别是破坏该边的代价和把该边建成无向边的代价(建立无向边的前提是删除该边)问是否存在一个集合S,和一个集合的补集T,破坏所有S集合到T集合的边代价和是X,然后修复T到S的边为无向边代价和是Y,满足Y<X;满足输出unhappy,否则输出happy;</span>
<span style="font-family: Arial, Helvetica, sans-serif;">分析:无源汇有上下界可行流判定, 原来每条边转化成  下界为D  上界为 D+B   ,判断是否存在可行流即可。</span>
 如果存在可行流  那么说明对于任意的 S 集合流出的肯定等于 流入的, 流出的计算的 X 肯定小于等于这个流量(X是下界之和), 计算出来的Y (上界之和)肯定大于等于 这个流量  肯定满足X<=Y。
<img src="http://img.blog.csdn.net/20140814105713964?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbXlwc3E=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define N 300
#define inf 0x3fffffff
struct node {
   int u,v,w,next;
}bian[N*N*3];
int head[N],yong,dis[N],work[N];
void init(){
yong=0;
memset(head,-1,sizeof(head));
}
void addbian(int u,int v,int w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(int u,int v,int w) {
addbian(u,v,w);
addbian(v,u,0);
}
int min(int a,int b)
{
    return a<b?a:b;
}
int bfs(int s,int t)
{
    memset(dis,-1,sizeof(dis));
    queue<int>q;
    q.push(s);
    dis[s]=0;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i!=-1;i=bian[i].next)
        {
            int v=bian[i].v;
            if(bian[i].w&&dis[v]==-1)
            {
                dis[v]=dis[u]+1;
                q.push(v);
                if(v==t)
                    return 1;
            }
        }
    }
    return 0;
}
int dfs(int  s,int limit,int t)
{
    if(s==t)return limit;
    for(int &i=work[s];i!=-1;i=bian[i].next)
    {
        int v=bian[i].v;
        if(bian[i].w&&dis[v]==dis[s]+1)
        {
            int tt=dfs(v,min(limit,bian[i].w),t);
            if(tt)
            {
                bian[i].w-=tt;
                bian[i^1].w+=tt;
                return tt;
            }
        }
    }
    return 0;
}
int dinic(int s,int t)
{
    int ans=0;
    while(bfs(s,t))
    {
        memcpy(work,head,sizeof(head));
        while(int tt=dfs(s,inf,t))
            ans+=tt;
    }
    return ans;
}
int main(){
        int sum,a,b,c,T,d,ans,i,k=0,n,m,t,S,w[N];
        scanf("%d",&t);
        while(t--) {
                init();
            scanf("%d%d",&n,&m);
        S=0;T=n+1;
        memset(w,0,sizeof(w));
            for(i=1;i<=m;i++) {
                scanf("%d%d%d%d",&a,&b,&c,&d);
                add(a,b,d);
               w[b]+=c;
               w[a]-=c;
            }
            sum=0;
            for(i=1;i<=n;i++) {
                if(w[i]>0) {
                    sum+=w[i];
                    add(S,i,w[i]);
                }
                if(w[i]<0)
                    add(i,T,-w[i]);
            }
            ans=dinic(S,T);
            if(sum==ans)
                printf("Case #%d: happy\n",++k);
            else
                printf("Case #%d: unhappy\n",++k);
        }

return 0;
}

时间: 2024-10-27 05:33:00

hdu 4940 无源汇有上下界最大流的相关文章

无源汇有上下界可行流存在定理

H - Reactor Cooling Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Description The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium

[loj#115] 无源汇有上下界可行流 网络流

#115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 这是一道模板题. n nn 个点,m mm 条边,每条边 e ee 有一个流量下界 lower(e) \text{lower}(e)lower(e) 和流量上界 upper(e) \text{upper}(e)upper(e),求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流量限

LOJ #115. 无源汇有上下界可行流

#115. 无源汇有上下界可行流 描述 这是一道模板题. n n n 个点,m m m 条边,每条边 e e e 有一个流量下界 lower(e) \text{lower}(e) lower(e) 和流量上界 upper(e) \text{upper}(e) upper(e),求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流量限制. 输入格式 第一行两个正整数 n n n.m m m. 之后的 m m m 行,每行四个整数 s s s.t t t.lower \text{lowe

ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li. 解题思路: 转自:https://www.cnbl

(一道模板题) 无源汇有上下界可行流

题目描述 这是一道模板题. n 个点,m  条边,每条边 e  有一个流量下界 lower(e) 和流量上界 upper(e),求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流量限制. 输入格式 第一行两个正整数 n .m . 之后的 m 行,每行四个整数 s .t .lower .upper. 输出格式 如果无解,输出一行 NO. 否则第一行输出 YES,之后 m  行每行一个整数,表示每条边的流量. 样例 样例输入 1 4 6 1 2 1 2 2 3 1 2 3 4 1 2

sgu194 Reactor Cooling【无源汇有上下界可行流】

这是模板题了吧,先建立附加源汇,然后保留每个点的in-out,如果这个值是正的,那么就从附加源先这个点连一个边权为in-out的边,否则从这个点向附加汇连一条相反数的边,剩下题目中的边就用上界-下界连就好了. 1 #include <bits/stdc++.h> 2 #define rep(i, a, b) for (int i = a; i <= b; i++) 3 #define drep(i, a, b) for (int i = a; i >= b; i--) 4 #def

ZOJ2314 Reactor Cooling 无源汇有上下界最大流

推荐看这里 #include <iostream> #include <cstring> #include <cstdio> #include <queue> using namespace std; int n, m, uu, vv, ww, cc, hea[225], cnt, ss, tt, maxFlow, lev[225], tot, T; const int oo=0x3f3f3f3f; struct Edge{ int too, nxt, ca

有上下界的网络流3-有源汇带上下界最小流SGU176

题目大意:有一个类似于工业加工生产的机器,起点为1终点为n,中间生产环节有货物加工数量限制,输入u v z c, 当c等于1时表示这个加工的环节必须对纽带上的货物全部加工(即上下界都为z),c等于0表示加工上界限制为z,下界为0,求节点1(起点)最少需要投放多少货物才能传送带正常工作. 解题思路:    1.直接 增设超级源点ss和超级汇点tt并连上附加边,对 当前图 求 无源汇带上下界可行流    2.将图的汇点sd连一条容量无限制的边到图的源点st,再求一遍 无源汇带上下界可行流    3.

【HDU 4940】Destroy Transportation system(数据水/无源无汇带上下界可行流)

Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s represent his enemy’s transportation system as a simple directed graph G with n nodes and m edges. Each node is a city and each directed edge is a directe