上图一共有5个区间,分别是[0,2]、[2,4]、[8,11]、[7,11]、[15,18]。如果要求这些区间合并后区间的大小,有两种简单的方法。
方法一:比较每两个区间的范围,如果两个区间有交集,则合并它们。最后所有区间会合并成几个离散的大区间,结果为这些区间大小之和。这种方法的时间复杂度是O(n^2)。
方法二:使用一个可以覆盖所有区间范围的数组,对每个区间进行标记,结果为数组中被标记元素的个数。这种方法的时间复杂度是O(nm)。
注:n是区间个数,m是所有区间总的范围。
如果n和m都比较大,那么上述两种方法的效率都不高。这里有一种很巧妙的解决这个问题的方法,它的时间复杂度是O(n+m)。使用一个可以覆盖所有区间范围的数组flg,初始化时将数组中的元素都置为0。对于每一个区间[l,r],将flg[l]++,flg[r+1]--。最后使用一个累加器cnt,初始置为0。依次扫描数组中的每一个元素,对于第i个元素,cnt+=flg[i]。此时,若cnt>0,则说明i在某些区间中;若cnt==0,则证明i不在任何区间中。统计cnt>0的元素个数即可。
#include <cstdio> #include <algorithm> #include <iostream> #include <string> #include <cstring> #include <vector> #include <stack> #include <queue> #include <cmath> #include <list> #include <deque> #include <map> #include <set> using namespace std; #define ll long long const double PI = acos(-1.0); const int maxn = 101; const int INF = 0x3f3f3f3f; int dx[]={0,0,-1,1}; int dy[]={-1,1,0,0}; int n,m; int f[maxn],cnt=0,sum=0; struct node { int l,r; }a[maxn]; int main() { scanf("%d%d",&n,&m); for(int i=0;i<n;i++) { scanf("%d %d",&a[i].l,&a[i].r); } for(int i=0;i<n;i++) { f[a[i].l]++; f[a[i].r+1]--; } for(int i=0;i<m;i++) { sum+=f[i]; if(sum>0) cnt++; } printf("%d\n",cnt); }
原文地址:https://www.cnblogs.com/Roni-i/p/9565158.html
时间: 2024-11-05 12:32:59