POJ 1860 Currency Exchange(如何Bellman-Ford算法判断正环)

题目链接:

https://cn.vjudge.net/problem/POJ-1860

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into
Russian Rubles at the exchange point, where the exchange rate is 29.75,
and the commission is 0.39 you will get (100 - 0.39) * 29.75 =
2963.3975RUR.

You surely know that there are N different currencies you can
deal with in our city. Let us assign unique integer number from 1 to N
to each currency. Then each exchange point can be described with 6
numbers: integer A and B - numbers of currencies it exchanges, and real R
AB, C
AB, R
BA and C
BA - exchange rates and commissions when exchanging A to B and B to A respectively.

Nick has some money in currency S and wonders if he can
somehow, after some exchange operations, increase his capital. Of
course, he wants to have his money in currency S in the end. Help him to
answer this difficult question. Nick must always have non-negative sum
of money while making his operations.

Input

The first line of the input contains four numbers: N - the number
of currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=10
3.

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10
-2<=rate<=10
2, 0<=commission<=10
2.

Let us call some sequence of the exchange operations simple
if no exchange point is used more than once in this sequence. You may
assume that ratio of the numeric values of the sums at the end and at
the beginning of any simple sequence of the exchange operations will be
less than 10
4.

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES
 1 /*
 2 题意描述
 3 输入货币的种数n,货币兑换点数m,某人有货币种类s,价值hm
 4 m个兑换点的规则是a兑换b,汇率是rab,费用是cab,b兑换a,汇率是rba,费用是cba,计算规则是(va-cab)*rab
 5 问能否通过这m个兑换点使他的拥有s这种货币的钱数增加
 6
 7 解题思路
 8 不管怎么兑换,关键是最后还要换回s这种钱,那么必须至少存在一个环,使得最后还能换回s,但是又要求增加钱数,那么这个换必须是正
 9 环。所以问题变成了如何判断图中存在正环。使用Bellman_Ford算法判断正环即可。
10
11 样例中第二条边是1.10 不是1.00,看样例看了半天没看懂
12 注意函数调用时数据类型的变换,包括输入和函数传递参数时的数据类型
13 */
14 #include<cstdio>
15 #include<cstring>
16 const int maxn = 410;
17
18 int u[maxn], v[maxn];
19 double ruv[maxn], cuv[maxn], dis[maxn];
20 int n, m, en;//边数
21 bool Bellman_Ford(int s, double hm);
22
23 int main()
24 {
25     int a, b, s;
26     double hm, rab, cab, rba, cba;
27     while(scanf("%d%d%d%lf", &n, &m, &s, &hm) != EOF) {
28         en = 0;
29         for(int i = 1; i <= m; i++) {
30             scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
31             u[en] = a; v[en] = b;
32             ruv[en] = rab;
33             cuv[en++] = cab;
34
35             u[en] = b; v[en] = a;
36             ruv[en] = rba;
37             cuv[en++] = cba;
38         }
39
40         if(Bellman_Ford(s, hm))
41             puts("YES");
42         else
43             puts("NO");
44     }
45     return 0;
46 }
47
48 bool Bellman_Ford(int s, double hm) {
49     memset(dis, 0, sizeof(dis));
50     dis[s] = hm;
51
52     for(int i = 1; i <= n; i++) {
53         for(int j = 0; j < en; j++) {
54             if(dis[v[j]] < (dis[u[j]] - cuv[j]) * ruv[j]) {
55                 dis[v[j]] = (dis[u[j]] - cuv[j]) * ruv[j];
56                 if(i == n)
57                     return 1;//存在正环
58             }
59         }
60     }
61     return 0;
62 } 

使用结构体封装一下Bellman-Ford算法,再使用队列和邻接表优化一下,代码如下:

使用的时候注意数据类型的使用和结点数全部减1。

 1 #include<cstdio>
 2 #include<vector>
 3 #include<queue>
 4 #include<cstring>
 5 using namespace std;
 6
 7 const int maxn = 310;
 8
 9 struct Edge {
10     int from, to;
11     double rait, com;
12     Edge(int u, int v, double r, double c): from(u), to(v), rait(r), com(c) { }
13 };
14
15 struct Bellman_Ford {
16     int n, m, s;
17     double hm;
18     vector<Edge> edges;
19     vector<int> G[maxn];
20     double d[maxn];
21     bool inq[maxn];
22     int cnt[maxn];
23
24     void init(int n) {
25         this->n = n;
26         for(int i = 0; i < n; i ++) {
27             G[i].clear();
28         }
29         edges.clear();
30     }
31
32     void AddEdge(int from, int to, double rait, double com){
33         edges.push_back(Edge(from, to, rait, com));
34         m = edges.size();
35         G[from].push_back(m - 1);
36     }
37
38     bool bellman_ford (int s, double hm) {
39         this->s = s;
40         this->hm = hm;
41         memset(d, 0, sizeof(d));
42         d[s] = hm;
43
44         memset(inq, 0, sizeof(inq));
45         memset(cnt, 0, sizeof(cnt));
46
47         queue<int> q;
48         q.push(s);
49         inq[s] = 1;
50
51         while(!q.empty()) {
52             int u = q.front();
53             q.pop();
54
55             inq[u] = 0;
56             for(int i = 0; i < G[u].size(); i++) {
57                 Edge e = edges[G[u][i]];
58                 if(d[e.to] < (d[u] - e.com) * e.rait){
59                     d[e.to] = (d[u] - e.com) * e.rait;
60                     if(!inq[e.to]) {
61                         q.push(e.to);
62                         inq[e.to] = 1;
63
64                         cnt[e.to]++;
65                         if(cnt[e.to] > n)
66                             return 1;
67                     }
68                 }
69             }
70         }
71         return 0;
72     }
73 };
74
75 struct Bellman_Ford solve;
76 int main()
77 {
78     int s, a, b, n, m;
79     double hm, rab, cab, rba, cba;
80     while(scanf("%d%d%d%lf", &n, &m, &s, &hm) != EOF) {
81         solve.init(n);
82         for(int i = 1; i <= m; i++) {
83             scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
84             a--;
85             b--;
86             solve.AddEdge(a, b, rab, cab);
87             solve.AddEdge(b, a, rba, cba);
88         }
89         int ans = solve.bellman_ford(s-1,hm);
90
91         if(ans)
92             puts("YES");
93         else
94             puts("NO");
95     }
96     return 0;
97 } 

原文地址:https://www.cnblogs.com/wenzhixin/p/9383074.html

时间: 2024-11-05 12:31:40

POJ 1860 Currency Exchange(如何Bellman-Ford算法判断正环)的相关文章

Dijkstra算法(求解单源最短路)详解 + 变形 之 poj 1860 Currency Exchange

/* 求解单源最短路问题:Dijkstra算法(该图所有边的权值非负) 关键(贪心): (1)找到最短距离已经确定的节点,从它出发更新与其相邻节点的最短距离: (2)此后不再关心(1)中“最短距离已经确定的节点”. 时间复杂度(大概的分析,不准确): “找到最短距离已经确定的节点” => O(|V|) "从它出发更新与其相邻节点的最短距离" => 邻接矩阵:O(|V|),邻接表:O(|E|) 需要循环以上两个步骤V次,所以时间复杂度:O(V^2) 即:在|E|较小的情况下,

poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

链接:poj 1860 题意:给定n中货币,以及它们之间的税率,A货币转化为B货币的公式为 B=(V-Cab)*Rab,其中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会增加 分析:这个题就是判断是否存在正权回路,可以用bellman-ford算法,不过松弛条件相反 也可以用SPFA算法,判断经过转换后,转换为原本货币的值是否比原值大... bellman-ford    0MS #include<stdio.h> #include<string.h> str

poj 1860 Currency Exchange(Bellman-Ford 改)

poj 1860 Currency Exchange Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several

poj 1860 Currency Exchange 解题报告

题目链接:http://poj.org/problem?id=1860 题目意思:给出 N 种 currency, M种兑换方式,Nick 拥有的的currency 编号S 以及他的具体的currency(V).M 种兑换方式中每种用6个数描述: A, B, Rab, Cab, Rba, Cba.其中,Rab: 货币A 兑换 货币B 的汇率为Rab,佣金为Cab.Rba:货币B 兑换 货币 A 的汇率,佣金为Cba.假设含有的A货币是x,那么如果兑换成B,得到的货币B 就是:(x-Cab) *

[2016-04-13][POJ][1860][Currency Exchange]

时间:2016-04-13 23:48:46 星期三 题目编号:[2016-04-13][POJ][1860][Currency Exchange] 题目大意:货币对换,问最后能否通过对换的方式使钱变多, 分析: 直接spfa判断是否存在环,如果存在那么就能无限增值 如果不存在正环,那么直接判断最终d[s] 是否 大于初始值 #include<cstdio> #include<vector> #include<cstring> #include<queue>

最短路(Bellman_Ford) POJ 1860 Currency Exchange

题目传送门 1 /* 2 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 3 详细解释:http://blog.csdn.net/lyy289065406/article/details/6645778 4 */ 5 #include <cstdio> 6 #include <iostream> 7 #include <algorithm> 8 #include <cstring> 9 #include <vector>

图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 7114 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe

poj 1860 Currency Exchange(SPFA)

题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can b

POJ 1860 Currency Exchange (Bellman ford)

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22405   Accepted: 8095 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe