自动阈值法.m

%自动阈值法:Otsu法 用MATLAB实现Otsu算法:
clc;clear;close;
I=imread('e:\role0\003i.bmp');
subplot(1,2,1),imshow(I);
title('原始图像')
grid on;                  %显示网格线
axis on;                  %显示坐标系
level=graythresh(I);     %确定灰度阈值
BW=im2bw(I,level);
subplot(1,2,2),imshow(BW);
title('Otsu 法阈值分割图像')
grid on;                  %显示网格线
axis on;                  %显示坐标系

时间: 2024-10-28 11:26:56

自动阈值法.m的相关文章

自动阈值法:Otsu法 用MATLAB实现Otsu算法:

%自动阈值法:Otsu法 用MATLAB实现Otsu算法: clc;clear;close; I=imread('e:\role0\003i.bmp'); subplot(1,2,1),imshow(I); title('原始图像') grid on; %显示网格线 axis on; %显示坐标系 level=graythresh(I); %确定灰度阈值 BW=im2bw(I,level); subplot(1,2,2),imshow(BW); title('Otsu 法阈值分割图像') gri

灰度图像的自动阈值分割(Otsu 法)

灰度图像的自动阈值分割(Otsu 法) 机器视觉领域许多算法都要求先对图像进行二值化.这种二值化操作阈值的选取非常重要.阈值选取的不合适,可能得到的结果就毫无用处.今天就来讲讲一种自动计算阈值的方法.这种方法被称之为Otsu法.发明人是个日本人,叫做Nobuyuki Otsu (大津展之). 简单的说,这种算法假设一副图像由前景色和背景色组成,通过统计学的方法来选取一个阈值,使得这个阈值可以将前景色和背景色尽可能的分开.或者更准确的说是在某种判据下最优.与数理统计领域的 fisher 线性判别算

灰度图像的自动阈值分割(Otsu 法)(转载)

灰度图像的自动阈值分割(Otsu 法) 机器视觉领域许多算法都要求先对图像进行二值化.这种二值化操作阈值的选取非常重要.阈值选取的不合适,可能得到的结果就毫无用处.今天就来讲讲一种自动计算阈值的方法.这种方法被称之为Otsu法.发明人是个日本人,叫做Nobuyuki Otsu (大津展之). 简单的说,这种算法假设一副图像由前景色和背景色组成,通过统计学的方法来选取一个阈值,使得这个阈值可以将前景色和背景色尽可能的分开.或者更准确的说是在某种判据下最优.与数理统计领域的 fisher 线性判别算

阈值分割之迭代选择阈值法

function [Ibw, thres] = autoThreshold(I) % 迭代法自动阈值分割 % % 输入:I - 要进行自动阈值分割的灰度图像 % 输出:Ibw - 分割后的二值图像 % thres - 自动分割采用的阈值 thres = 0.5 * (double(min(I(:))) + double(max(I(:)))); %初始阈值 done = false; %结束标志 while ~done g = I >= thres; Tnext = 0.5 * (mean(I(

七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)

转自:http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分. 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选

【图像算法】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)

图像算法:图像阈值分割 SkySeraph Dec 21st 2010  HQU Email:[email protected]    QQ:452728574 Latest Modified Date:Dec.21st 2010 HQU 一.工具:VC+OpenCV 二.语言:C++ 三.原理(略) 四.程序 主程序(核心部分)  代码 1 /*===============================图像分割=====================================*/2

opencv-视频处理-实时前景检测-阈值法

阈值法: 对每一帧进行阈值处理,取较低的一个阈值进行二值化处理.假设以下为视频流中的任意一帧 代表任意一点处的亮度值(灰度空间),代表一个固定的阈值,对当前帧做以下二值化处理: 该算法比较适合运动物体的亮度大于周围环境的情况,如夜晚的汽车前灯.尾灯等. 下面基于阈值法的前景检测,完成夜晚视频中车辆的检测.跟踪和计数: [算法的步骤] 1.首先画出感兴趣区域,步骤再此博文已详细描述:视频中画出感兴趣区域 2.对进入感兴趣区域的车辆进行前灯的检测,跟踪和计数 代码如下: #include<iostr

python数字图像处理(11):图像自动阈值分割

图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像. 在skimage库中,阈值分割的功能是放在filters模块中. 我们可以手动指定一个阈值,从而来实现分割.也可以让系统自动生成一个阈值,下面几种方法就是用来自动生成阈值. 1.threshold_otsu 基于Otsu的阈值分割方法,函数调

大津法阈值法代码

int otsu(IplImage *image) { assert(NULL != image); int width = image->width; int height = image->height; int x=0,y=0; int pixelCount[256]; float pixelPro[256]; int i, j, pixelSum = width * height, threshold = 0; uchar* data = (uchar*)image->image