Java 加解密技术系列之 RSA

距离上一次写博客感觉已经很长时间了,先吐槽一下,这个月以来,公司一直在加班,又是发版、上线,又是新项目太紧,具体的就不多说了,想听我吐槽的小伙伴,可以私信给我(*^__^*) 。上一篇文章,已经把对称加密的算法讲完了。从今天开始,要说说非对称加密了。因为,非对称加密真的是太重要了,我们的日常生活中,都离不开非对称加密。

概念

在说 RSA 之前,首先聊聊什么是非对称加密。在讲对称加密的时候,就曾经说过,对称加密算法在加密和解密时使用的是同一个秘钥,加解密双方必须使用同一个密钥才能进行正常的沟通。而非对称加密则不然,非对称加密算法需要两个密钥来进行加密和解密,分别是公钥和私钥。

需要注意的一点,这个公钥和私钥必须是一对的,如果用公钥对数据进行加密,那么只有使用对应的私钥才能解密,反之亦然。由于加密和解密使用的是两个不同的密钥,因此,这种算法叫做非对称加密算法。

工作过程

如下图,甲乙之间使用非对称加密的方式传输数据。

  • 乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开;
  • 得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方;
  • 乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密;
  • 乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息;
  • 在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。

在非对称加密中使用的主要算法有:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。今天主要是介绍 RSA ,至于其他的算法,后续会选择几个进行介绍。

RSA

其实,在早在 1978 年的时候,RSA就已经出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。其原理就如上面的工作过程所述。

RSA 算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。

代码实现

下面来看一下具体的代码实现。

<span style="font-family:Comic Sans MS;font-size:12px;">package com.test.rsa;

import com.google.common.collect.Maps;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;

import javax.crypto.Cipher;
import java.security.*;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Map;

/**
 * Created by xiang.li on 2015/3/3.
 * RSA 加解密工具类
 */
public class RSA {
    /**
     * 定义加密方式
     */
    private final static String KEY_RSA = "RSA";
    /**
     * 定义签名算法
     */
    private final static String KEY_RSA_SIGNATURE = "MD5withRSA";
    /**
     * 定义公钥算法
     */
    private final static String KEY_RSA_PUBLICKEY = "RSAPublicKey";
    /**
     * 定义私钥算法
     */
    private final static String KEY_RSA_PRIVATEKEY = "RSAPrivateKey";

    /**
     * 初始化密钥
     * @return
     */
    public static Map<String, Object> init() {
        Map<String, Object> map = null;
        try {
            KeyPairGenerator generator = KeyPairGenerator.getInstance(KEY_RSA);
            generator.initialize(1024);
            KeyPair keyPair = generator.generateKeyPair();
            // 公钥
            RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic();
            // 私钥
            RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate();
            // 将密钥封装为map
            map = Maps.newHashMap();
            map.put(KEY_RSA_PUBLICKEY, publicKey);
            map.put(KEY_RSA_PRIVATEKEY, privateKey);
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
        }
        return map;
    }

    /**
     * 用私钥对信息生成数字签名
     * @param data 加密数据
     * @param privateKey 私钥
     * @return
     */
    public static String sign(byte[] data, String privateKey) {
        String str = "";
        try {
            // 解密由base64编码的私钥
            byte[] bytes = decryptBase64(privateKey);
            // 构造PKCS8EncodedKeySpec对象
            PKCS8EncodedKeySpec pkcs = new PKCS8EncodedKeySpec(bytes);
            // 指定的加密算法
            KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
            // 取私钥对象
            PrivateKey key = factory.generatePrivate(pkcs);
            // 用私钥对信息生成数字签名
            Signature signature = Signature.getInstance(KEY_RSA_SIGNATURE);
            signature.initSign(key);
            signature.update(data);
            str = encryptBase64(signature.sign());
        } catch (Exception e) {
            e.printStackTrace();
        }
        return str;
    }

    /**
     * 校验数字签名
     * @param data 加密数据
     * @param publicKey 公钥
     * @param sign 数字签名
     * @return 校验成功返回true,失败返回false
     */
    public static boolean verify(byte[] data, String publicKey, String sign) {
        boolean flag = false;
        try {
            // 解密由base64编码的公钥
            byte[] bytes = decryptBase64(publicKey);
            // 构造X509EncodedKeySpec对象
            X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
            // 指定的加密算法
            KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
            // 取公钥对象
            PublicKey key = factory.generatePublic(keySpec);
            // 用公钥验证数字签名
            Signature signature = Signature.getInstance(KEY_RSA_SIGNATURE);
            signature.initVerify(key);
            signature.update(data);
            flag = signature.verify(decryptBase64(sign));
        } catch (Exception e) {
            e.printStackTrace();
        }
        return flag;
    }

    /**
     * 私钥解密
     * @param data 加密数据
     * @param key 私钥
     * @return
     */
    public static byte[] decryptByPrivateKey(byte[] data, String key) {
        byte[] result = null;
        try {
            // 对私钥解密
            byte[] bytes = decryptBase64(key);
            // 取得私钥
            PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(bytes);
            KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
            PrivateKey privateKey = factory.generatePrivate(keySpec);
            // 对数据解密
            Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            result = cipher.doFinal(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 私钥解密
     * @param data 加密数据
     * @param key 公钥
     * @return
     */
    public static byte[] decryptByPublicKey(byte[] data, String key) {
        byte[] result = null;
        try {
            // 对公钥解密
            byte[] bytes = decryptBase64(key);
            // 取得公钥
            X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
            KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
            PublicKey publicKey = factory.generatePublic(keySpec);
            // 对数据解密
            Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
            cipher.init(Cipher.DECRYPT_MODE, publicKey);
            result = cipher.doFinal(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 公钥加密
     * @param data 待加密数据
     * @param key 公钥
     * @return
     */
    public static byte[] encryptByPublicKey(byte[] data, String key) {
        byte[] result = null;
        try {
            byte[] bytes = decryptBase64(key);
            // 取得公钥
            X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
            KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
            PublicKey publicKey = factory.generatePublic(keySpec);
            // 对数据加密
            Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            result = cipher.doFinal(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 私钥加密
     * @param data 待加密数据
     * @param key 私钥
     * @return
     */
    public static byte[] encryptByPrivateKey(byte[] data, String key) {
        byte[] result = null;
        try {
            byte[] bytes = decryptBase64(key);
            // 取得私钥
            PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(bytes);
            KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
            PrivateKey privateKey = factory.generatePrivate(keySpec);
            // 对数据加密
            Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
            cipher.init(Cipher.ENCRYPT_MODE, privateKey);
            result = cipher.doFinal(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 获取公钥
     * @param map
     * @return
     */
    public static String getPublicKey(Map<String, Object> map) {
        String str = "";
        try {
            Key key = (Key) map.get(KEY_RSA_PUBLICKEY);
            str = encryptBase64(key.getEncoded());
        } catch (Exception e) {
            e.printStackTrace();
        }
        return str;
    }

    /**
     * 获取私钥
     * @param map
     * @return
     */
    public static String getPrivateKey(Map<String, Object> map) {
        String str = "";
        try {
            Key key = (Key) map.get(KEY_RSA_PRIVATEKEY);
            str = encryptBase64(key.getEncoded());
        } catch (Exception e) {
            e.printStackTrace();
        }
        return str;
    }

    /**
     * BASE64 解密
     * @param key 需要解密的字符串
     * @return 字节数组
     * @throws Exception
     */
    public static byte[] decryptBase64(String key) throws Exception {
        return (new BASE64Decoder()).decodeBuffer(key);
    }

    /**
     * BASE64 加密
     * @param key 需要加密的字节数组
     * @return 字符串
     * @throws Exception
     */
    public static String encryptBase64(byte[] key) throws Exception {
        return (new BASE64Encoder()).encodeBuffer(key);
    }

    /**
     * 测试方法
     * @param args
     */
    public static void main(String[] args) {
        String privateKey = "";
        String publicKey = "";
        // 生成公钥私钥
        Map<String, Object> map = init();
        publicKey = getPublicKey(map);
        privateKey = getPrivateKey(map);
        System.out.println("公钥: \n\r" + publicKey);
        System.out.println("私钥: \n\r" + privateKey);
        System.out.println("公钥加密--------私钥解密");
        String word = "你好,世界!";
        byte[] encWord = encryptByPublicKey(word.getBytes(), publicKey);
        String decWord = new String(decryptByPrivateKey(encWord, privateKey));
        System.out.println("加密前: " + word + "\n\r" + "解密后: " + decWord);
        System.out.println("私钥加密--------公钥解密");
        String english = "Hello, World!";
        byte[] encEnglish = encryptByPrivateKey(english.getBytes(), privateKey);
        String decEnglish = new String(decryptByPublicKey(encEnglish, publicKey));
        System.out.println("加密前: " + english + "\n\r" + "解密后: " + decEnglish);
        System.out.println("私钥签名——公钥验证签名");
        // 产生签名
        String sign = sign(encEnglish, privateKey);
        System.out.println("签名:\r" + sign);
        // 验证签名
        boolean status = verify(encEnglish, publicKey, sign);
        System.out.println("状态:\r" + status);
    }
}</span>

加解密结果

结束语

其实,看似很复杂的过程,用一句话就可以描述:使用公钥加密、私钥解密,完成了乙方到甲方的一次数据传递,通过私钥加密、公钥解密,同时通过私钥签名、公钥验证签名,完成了一次甲方到乙方的数据传递与验证,两次数据传递完成一整套的数据交互。

非对称加密算法的出现,就是为了解决只有一把密钥的加解密,只要这一把密钥丢失或者被公开,那么加密数据就很容易被攻击。同时,也正是由于非对称加密算法的出现,才有了后面的数字签名、数字证书等等。

好了,今天就到这吧,下一篇继续非对称加密,至于哪一种,到时候就知道了,这里先保密,(*^__^*) 嘻嘻。

时间: 2024-10-16 13:36:37

Java 加解密技术系列之 RSA的相关文章

9.Java 加解密技术系列之 RSA

Java 加解密技术系列之 RSA 序 概念 工作流程 RSA 代码实现 加解密结果 结束语 序 距 离上一次写博客感觉已经很长时间了,先吐槽一下,这个月以来,公司一直在加班,又是发版.上线,又是新项目太紧,具体的就不多说了,想听我吐槽的小伙伴, 可以私信给我(*^__^*) .上一篇文章,已经把对称加密的算法讲完了.从今天开始,要说说非对称加密了.因为,非对称加密真的是太重要了,我们的日常生活中,都离不开非对称加密. 概念 在说 RSA 之前,首先聊聊什么是非对称加密.在讲对称加密的时候,就曾

Java 加解密技术系列文章

Java 加解密技术系列之 总结 Java 加解密技术系列之 DH Java 加解密技术系列之 RSA Java 加解密技术系列之 PBE Java 加解密技术系列之 AES Java 加解密技术系列之 3DES Java 加解密技术系列之 DES Java 加解密技术系列之 HMAC Java 加解密技术系列之 SHA Java 加解密技术系列之 MD5 Java 加解密技术系列之 BASE64

10.Java 加解密技术系列之 DH

Java 加解密技术系列之 DH 序 概念 原理 代码实现 结果 结束语 序 上一篇文章中简单的介绍了一种非对称加密算法 — — RSA,今天这篇文章,继续介绍另一种非对称加密算法 — — DH.当然,可能有很多人对这种加密算法并不是很熟悉,不过没关系,希望今天这篇文章能帮助你熟悉他. 原理 整个通信过程中g.g^a.g^b是公开的,但由于g.a.b都是整数,通过g和g^a得到a还是比较容易的,b也是如此,所以最终的“密钥”g^(a*b)还是可以被计算出来的.所以实际的过程还需要在基本原理上加入

8.Java 加解密技术系列之 PBE

Java 加解密技术系列之 PBE 序 概念 原理 代码实现 结束语 序 前 边的几篇文章,已经讲了几个对称加密的算法了,今天这篇文章再介绍最后一种对称加密算法 — — PBE,这种加密算法,对我的认知来说,并没有 DES.3DES.AES 那么流行,也不尽然,其实是我之前并没有这方面的需求,当然接触他的机会也就很少了,因此,可想而知,没听过显然在正常不过了. 概念 PBE,全称为“Password Base Encryption”,中文名“基于口令加密”,是一种基于密码的加密算法,其特点是使用

11.Java 加解密技术系列之 总结

Java 加解密技术系列之 总结 序 背景 分类 常用算法 原理 关于代码 结束语 序 上一篇文章中简单的介绍了第二种非对称加密算法 — — DH,这种算法也经常被叫做密钥交换协议,它主要是针对密钥的保护.同时,由于水平的限制,打算这个系列就到此为止了,这篇文章就算是一个总结吧,回顾一下这几个月来都写了些什么. 背景 其 实,在开始写这个系列之前,我对于 Java 的加解密也并不是那么了解.之所以要写这些文章,还主要是由于工作的原因.记得几个月以前,当时项目要做一个数字证书,证书的生成.存储.传

6. Java 加解密技术系列之 3DES

Java 加解密技术系列之 3DES 序 背景 概念 原理 代码实现 结束语 序 上一篇文章讲的是对称加密算法 — — DES,这篇文章打算在 DES 的基础上,继续多讲一点,也就是 3 重 DES — — Triple DES. 背景 至于 3DES 为什么会出现呢?其实,这个不难想到.由于 DES 是一种非常简便的加密算法,但是密钥长度比较短,计算量比较小,相对来说,比较容易被破解.因此,在 DES 的基础上,使用三重数据加密算法,对数据进行加密,这样来说,破解的概率就小了很多. 概念 3D

5.Java 加解密技术系列之 DES

Java 加解密技术系列之 DES 序 背景 概念 基本原理 主要流程 分组模式 代码实现 结束语 序 前 几篇文章讲的都是单向加密算法,其中涉及到了 BASE64.MD5.SHA.HMAC 等几个比较常见的加解密算法.这篇文章,以及后面几篇,打算介绍几个对称加密算法,比如:DES.3DES(TripleDES).AES 等.那么,这篇文章主要是对 DES 大概讲一下. 背景 在 讨论 DES 之前,首先了解一下什么是对称加密算法吧.对于对称加密算法,他应用的时间比较早,技术相对来说比较成熟,在

7.java 加解密技术系列之 AES

java 加解密技术系列之 AES 序 概念 原理 应用 代码实现 结束语 序 这篇文章继续介绍对称加密算法,至于今天的主角,不用说,也是个厉害的角色 — — AES.AES 的出现,就是为了来替代原先的 DES 标准.现在来说,AES 的用途还是非常广泛的. 概念 AES, 全称为“Advanced Encryption Standard”,中文名“高级加密标准”,在密码学中又称 Rijndael 加密法,是美国联邦政府采用的一种区块加密标准.AES 加密算法作为新一代的数据加密标准汇聚了强安

1.Java 加解密技术系列之 BASE64

Java 加解密技术系列之 BASE64 序号 背景 正文 总结 序 这段时间,工作中 用到了 Java 的加解密技术,本着学习的态度,打算从这篇文章开始,详细的研究一番 Java 在加解密技术上有什么与众不同,同时,也想为大家或者自己留下点什么,一块分享这其中的“精髓”.需要说明的是,这个系列可能要持续一段时间,因为,加解 密的相关技术太多太多了,要搞明白这些着实不是一件容易的事. 背景 说到这个加解密技 术,之前一直没有机会研究这个东西,这次公司里的项目需要加解密的支持,因此有机会能够好好研