【互动问答分享】第2期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代”

Spark亚太研究院100期公益大讲堂 【第2期互动问答分享】

Q1:新手学习spark如何入手才好?

  • 先学习Scala的内容,强烈推荐《快学Scala》;
  • 然后按照我们免费发布的“云计算分布式大数据Spark实战高手之路(共3本书)”循序渐进的学习即可,其中“云计算分布式大数据Spark实战高手之路---从零开始”涵盖了Spark1.0的所有主题:包括Spark集群的构建,Spark架构设计、Spark内核剖析、Shark、Spark SQL、Spark Streaming、图计算GraphX、机器学习、Spark on Yarn、JobServer等,为了方便大家学习Spark,网络发布版本采用图文并茂的方式发布, 这样大家在阅读的时候就像家林在身边做演示和讲解一样,不亦乐哉!以Spark集群的搭建为例,  对于90%以上想学习Spark的人而言,如何构建Spark集群是其最大的难点之一,为了解决大家构建Spark集群的一切困难,家林在“云计算分布式大数据Spark实战高手之路---从零开始”的第一章节中把Spark集群的构建分为了四个步骤,每个步骤为一个小节,从零起步,不需要任何前置知识,涵盖操作的每一个细节,构建完整的Spark集群。

Q2:我想问,hdfs的namenode挂了,怎么处理?

  • 使用ZooKeeper;
  • 使用Mesos;
  • 使用Yarn;

Q3:用python和scala区别大吗?

  • 就代码的风格而言是不大的;
  • 世界上也有很多人使用python开发Spark程序;
  • 但是最为推荐的是Scala,因为Spark框架是用Scala编写的,在API方面对Scala的支持也是最好的;

Q4:对几百T的数据,现在SPARK支持得如何?

  • Spark能够非常好的处理几十T或者几百T的数据;
  • 正如Spark能够轻松处理PB级别的数据;

Q5:可以结果直接输出到关系型数据库吗?

  • 目前不可以;
  • 一般都是把结果直接输出到HDFS上;
  • 让后在采用Sqoop等工具把数据导入到Oracle、MySQL等数        据库中;

Q6:SPARK环境需要哪些? 除了HDFS基础,有SPARK集成包么?

  • Spark的安装需要Hadoop的HDFS;
  • Spark有自己的集成包,但是依旧需要HDFS的配合;
  • 同时Spark也可以部署到亚马逊云上;

Q7:spark的缺点是什么?不适合做什么?

  • 目前主要的缺点是对数据细粒度的支持不够好;

Q8:spark sql可以代替hive和hbase吗?

  • Spark SQL可以取代Hive;
  • Spark SQL可以完成HBase的大部分功能;
  • Spark Streaming配合Spark SQL可以取代HBase;

Q9:没有java基础可否直接看scala语言?

  • 可以直接看Scala语言

                                                                                                                    Q10:能否提供一个安装部署spark虚拟机的视频或者文档?

  • 我们免费发布的“云计算分布式大数据Spark实战高手之路(共3本书)”循序渐进的学习即可,其中“云计算分布式大数据Spark实战高手之路---从零开始”涵盖了Spark1.0的所有主题:包括Spark集群的构建,Spark架构设计、Spark内核剖析、Shark、Spark SQL、Spark Streaming、图计算GraphX、机器学习、Spark on Yarn、JobServer等,为了方便大家学习Spark,网络发布版本采用图文并茂的方式发布, 这样大家在阅读的时候就像家林在身边做演示和讲解一样,不亦乐哉!以Spark集群的搭建为例,  对于90%以上想学习Spark的人而言,如何构建Spark集群是其最大的难点之一,为了解决大家构建Spark集群的一切困难,家林在“云计算分布式大数据Spark实战高手之路---从零开始”的第一章节中把Spark集群的构建分为了四个步骤,每个步骤为一个小节,从零起步,不需要任何前置知识,涵盖操作的每一个细节,构建完整的Spark集群。

Q11:目前那些行业在用spark处理大数据?

  • Spark技术在国内外的应用开始越来越广泛,它正在逐渐走向成熟,并在这个领域扮演更加重要的角色。国外一些大型互联网公司已经部署了Spark。例如:一直支持Hadoop的四大商业机构(Cloudera、MapR、Hortonworks、EMC)已纷纷宣布支持Spark;Mahout前一阶段也表示,将不再接受任何形式以MapReduce实现的算法,同时还宣布了接受基于Spark新的算法;而Cloudera的机器学习框架Oryx的执行引擎也将由Hadoop的MapReduce替换成Spark;另外,Google也已经开始将负载从MapReduce转移到Pregel和Dremel上;FaceBook也宣布将负载转移到Presto上……
  • Yahoo!、淘宝、优酷土豆、网易、百度、腾讯等国内大型知名企业已经在商业生产环境下开始使用Spark技术;Intel、IBM、Linkin、Twwitter等国外大型知名企业也都在大力支持Spark。随着这些国内外大企业的使用,Spark技术的发展必然势不可挡,行业普及很快就会到来
时间: 2024-10-27 10:32:47

【互动问答分享】第2期决胜云计算大数据时代Spark亚太研究院公益大讲堂的相关文章

【互动问答分享】第5期决胜云计算大数据时代Spark亚太研究院公益大讲堂

Spark亚太研究院100期公益大讲堂 [第5期互动问答分享] Q1:spark怎样支持即席,应该不是spark sql吧,是hive on spark么? Spark1.0 以前支持即席查询的技术是Shark; Spark 1.0和 Spark 1.0.1支持的即席查询技术是Spark SQL; 尚未发布的Spark 1.1开始 Spark SQL是即席查询的核心,我们期待Hive on Spark也能够支持即席查询: Q2:现在spark 1.0.0版本是支持hive on spark么,它

【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第8期互动问答分享] Q1:spark线上用什么版本好? 建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心API已经稳定: 从功能的角度考虑使用最新版本的Spark 1.0.2也是非常好的,Spark 1.0.2在Spark 1.0.1的基础上做了非常多的改进: Spark 1.0.2改进参考 http://spark.apache.org/releases/spark-release-1-0-2.ht

【互动问答分享】第6期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第6期互动问答分享] Q1:spark streaming 可以不同数据流 join吗? Spark Streaming不同的数据流可以进行join操作:       Spark Streaming is an extension of the core Spark API that allows enables high-throughput, fault-tolerant stream processing of live

【互动问答分享】第15期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第15期互动问答分享] Q1:AppClient和worker.master之间的关系是什么? :AppClient是在StandAlone模式下SparkContext.runJob的时候在Client机器上应       用程序的代表,要完成程序的registerApplication等功能: 当程序完成注册后Master会通过Akka发送消息给客户端来启动Driver: 在Driver中管理Task和控制Work

【互动问答分享】第10期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第10期互动问答分享] Q1:Spark on Yarn的运行方式是什么? Spark on Yarn的运行方式有两种:Client和Cluster模式 Client模式如下所示: Cluster模式如下所示: Q2:Yarn的框架内部是如何实现的? Yarn是一个框架,内部实现好了RM和NM: 公开课: 上海:9月26-28日,<决胜大数据时代:Hadoop.Yarn.Spark企业级最佳实践> 北京:

【互动问答分享】第17期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第17期互动问答分享] Q1:为了加快spark shuffle 的执行速度是否可以把spark_local_dirs 指向一块固态硬盘上面,这样做是否有效果. 可以把spark_local_dirs指向一块固态硬盘上面,这样会非常有效的提升Spark执行速度: 同时想更快的提升Spark运行速度的话可以指定多个Shuffle输出的目录,让Shuffle并行读写磁盘: Q2:solidation=true只是在同一机器

【互动问答分享】第13期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第13期互动问答分享] Q1:tachyon+spark框架现在有很多大公司在使用吧? Yahoo!已经在长期大规模使用: 国内也有公司在使用: Q2:impala和spark sql如何选择呢? Impala已经被官方宣布“安乐死”,被官方温柔的放弃: Spark SQL是Spark的核心子框架,同时能够和图计算.机器学习框架无缝集成,强烈推荐使用! Q3:如果有程序采用流式不停往tachyon集群写数据,但tachyon内存

【互动问答分享】第18期决胜云计算大数据时代Spark亚太研究院公益大讲堂(改)

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第18期互动问答分享] Q1:Master和Driver的是同一个东西吗? 两者不是同一个东西,在Standalone模式下Master是用于集群资源管理和调度的,而Driver适用于指挥Worker上的Executor通过多线的方式处理任务的: Master位于集群的管理节点,一般和 NameNode在同一个节点上: Driver一般都位于客户机上,客户机一般都不属于集群,但是和集群在同一个网络环境下,因为客户机中的

【互动问答分享】第12期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第12期互动问答分享]   Q1:jobserver 企业使用情况如何? 中国有一家视频网站已经使用超过JobServer超过半年的时间: 2013年和2014年Spark Summit均大力推荐使用JobServer: Q2:请问,jobserver是适合企业内部还是供外部客户使用(可能并发.安全有要求),还是两者ok? 目前可见的企业使用案例均是用在企业内部: 如果是企业外部可以作为云服务或者大数据资源池使用: Q