数据结构与算法---排序算法(Sort Algorithm)

排序算法的介绍

排序也称排序算法 (Sort Algorithm),排序是将一组数据依指定的顺序进行排列的过程

排序的分类

1) 内部排序: 指将需要处理的所有数据都加载 到内部存储器(内存)中进行排序。

2) 外部排序法:数据量过大,无法全部加载到内 存中,需要借助外部存储(文件等)进行 排序。

常见的排序算法分类

算法的时间复杂度

度量一个程序(算法)执行时间的两种方法

1、事后统计的方法这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;

二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

2、事前估算的方法通过分析某个算法的时间复杂度来判断哪个算法更优.

时间频度

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

举例说明-基本案例

比如计算1-100所有数字之和, 我们设计两种算法:

时间复杂度

1、一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) )  为算法的渐进时间复杂度,简称时间复杂度。

2、T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。

3、计算时间复杂度的方法:

  1. 用常数1代替运行时间中的所有加法常数  T(n)=n²+7n+6 => T(n)=n²+7n+1
  2. 修改后的运行次数函数中,只保留最高阶项  T(n)=n²+7n+1 => T(n) = n²
  3. 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

常见的时间复杂度

说明:

常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低

从图中可见,我们应该尽可能避免使用指数阶的算法

时间复杂度示例介绍

1)常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2)对数阶O(log2n)

说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n)  。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .

3)线性阶O(n)

说明:这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

4)线性对数阶O(nlogN)

说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

5)平方阶O(n²)

说明:平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n*n),即  O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m*n)

6)立方阶O(n³)、K次方阶O(n^k)

说明:参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似

平均时间复杂度和最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
  2. 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。

算法的空间复杂度简介

  1. 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
  3. 在做算法分析时,主要讨论的是时间复杂度从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

原文地址:https://www.cnblogs.com/justBobo/p/11037270.html

时间: 2024-12-29 13:14:09

数据结构与算法---排序算法(Sort Algorithm)的相关文章

数据结构与算法-排序算法-partial

前言 都什么时代了,还写排序算法的总结? 原因有二.一是别人的精彩永远是别人的,你只有鼓掌的份儿:有些事情实际动手去做了才会有所体会. 二是排序算法是一类基础类的算法,不光是IT从业者真正入门的门槛,也是一些高级算法的关键部分或算法评估的benchmark. 计划说明的算法内容有哪些?  算法的思想.Java代码实现和平均算法复杂度.算法运行完整示例. 参考文献有哪些? wiki[EB/OL] Shaffer C. A. Data Structure and Algorithm Analysis

数据结构和算法-排序算法-冒泡排序

##################     排序算法        ###################### """ 排序算法, 我们想要把线性表中的无序序列,排成有序序列,的算法,就是排序算法, 排序算法的稳定性 举例:假设对下面的元组要以他们的第一个数字来排序. (4, 1) (3, 1) (3, 7)(5, 6) 如果你排序之后,(3, 1) (3, 7)和原来的顺序一样,就是稳定的,否则就是不稳定的, (3, 1) (3, 7) (4, 1) (5, 6) (维

数据结构之高级排序算法

一.希尔排序 希尔排序(缩小增量法) 属于插入类排序,由Shell提出,希尔排序对直接插入排序进行了简单的改进:它通过加大插入排序中元素之间的间隔,并在这些有间隔的元素中进行插入排序,从而使数据项大跨度地移动,当这些数据项排过一趟序之后,希尔排序算法减小数据项的间隔再进行排序,依次进行下去,进行这些排序时的数据项之间的间隔被称为增量,习惯上用字母h来表示这个增量. 具体代码实现: 1 package data.struct.algorithm; 2 3 //高级排序算法之希尔排序 4 class

(2)Java数据结构--二叉树 -和排序算法实现

=== 注释:此人博客对很多个数据结构类都有讲解-并加以实例 Java API —— ArrayList类 & Vector类 & LinkList类Java API —— BigDecimal类Java API —— BigInteger类Java API —— Calendar类Java API —— DateFormat类Java API —— Date类Java API —— HashMap类 & LinkedHashMap类Java API —— JDK5新特性Java

[数据结构] 几种排序算法

插入排序 直接插入排序(Insertion Sort)的基本思想是:每次将一个待排序的元素,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止. 设数组为a[0-n-1]. 1. 初始时,a[0]自成1个有序区,无序区为a[1..n-1].令i=1 2. 将a[i]并入当前的有序区a[0-i-1]中形成a[0-i]的有序区间. 3. i++并重复第二步直到i==n-1.排序完成.   希尔排序 希尔排序的实质就是分组插入排序. 该方法的基本思想是:先将整个待排元素序

算法和数据结构~各位排序算法的介绍与实现(C#)

排序是指将元素集合按照规定的顺序排列.通常有两种排序方法,升序排列和降序排列.例如,对整数集{5,2,7,1}进行升序排列,结果为{1,2,5,7},对其进行降序排列结果为{7,5,2,1}.总的来说,排序的目的是使数据能够以更有意义的形式表现出来.虽然排序最显著的应用是排列数据以显示它,但它往往可以用来解决其他的问题,特别是作为某些已成型算法的一部分.      总的来说,排序算法分为两大类:比较排序和线性时间排序.比较排序依赖于比较和交换来将元素移动到正确的位置上.令人惊讶的是,并不是所有的

【数据结构】常用排序算法(包括:选择排序,堆排序,冒泡排序,选择排序,快速排序,归并排序)

直接插入排序: 在序列中,假设升序排序 1)从0处开始. 1)若走到begin =3处,将begin处元素保存给tmp,比较tmp处的元素与begin--处元素大小关系,若begin处<begin-1处,将begin-1处元素移动到begin:若大于,则不变化.再用tmp去和begin--处的元素用同样的方法去作比较,直至begin此时减少到数组起始坐标0之前结束. 3)以此类推,依次走完序列. 时间复杂度:O() 代码如下: //Sequence in ascending order  voi

【数据结构】选择排序算法示例

基本选择排序编辑 排序算法即解决以下问题的算法: 输入 n个数的序列<a1,a2,a3,...,an>. 输出 原序列的一个重排<a1*,a2*,a3*,...,an*>:,使得a1*<=a2*<=a3*<=...<=an* 排序算法有很多,包括插入排序,冒泡排序,堆排序,归并排序,选择排序,计数排序,基数排序,桶排序,快速排序等.插入排序,堆排序,选择排序,归并排序和快速排序,冒泡排序都是比较排序,它们通过对数组中的元素进行比较来实现排序,其他排序算法则是

数据结构与算法——排序算法

常见排序算法主要有: 插入排序(直接插入排序.希尔排序) 选择排序(直接选择排序.堆排序) 交换排序(冒泡排序.快速排序) 归并排序 基数排序 外部排序 一.直接插入排序 算法思想:在一个待排序列中,从第二个元素开始,依次进行排序,每次都将待排序元素从后往前,依次与前面的元素进行比较,从而将带排序元素移动到一个合适的位置,直到最后一个待排序元素移动到合适位置,则排序完成. 算法特点:最好情况下时间复杂度O(n),最坏情况下时间复杂度O(n2),稳定排序算法 二.希尔排序 希尔排序算法基础:待排序