一篇文章搞懂装饰器所有用法

如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖。

它放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰函数 或 装饰器

你要问我装饰器可以实现什么功能?我只能说你的脑洞有多大,装饰器就有多强大。

装饰器的使用方法很固定:

  • 先定义一个装饰函数(帽子)(也可以用类、偏函数实现)
  • 再定义你的业务函数、或者类(人)
  • 最后把这顶帽子带在这个人头上

装饰器的简单的用法有很多,这里举两个常见的。

  • 日志打印器
  • 时间计时器

02. 入门用法:日志打印器#

首先是日志打印器

实现的功能:

  • 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。
  • 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。

Copy

Copy

# 这是装饰函数
def logger(func):
    def wrapper(*args, **kw):
        print(‘我准备开始计算:{} 函数了:‘.format(func.__name__))

        # 真正执行的是这行。
        func(*args, **kw)

        print(‘啊哈,我计算完啦。给自己加个鸡腿!!‘)
    return wrapper

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

Copy

Copy

@logger
def add(x, y):
    print(‘{} + {} = {}‘.format(x, y, x+y))

然后我们来计算一下。

Copy

Copy

add(200, 50)

快来看看输出了什么,神奇不?

Copy

Copy

我准备开始计算:add 函数了:
200 + 50 = 250
啊哈,我计算完啦。给自己加个鸡腿!

03. 入门用法:时间计时器#

再来看看 时间计时器
实现功能:顾名思义,就是计算一个函数的执行时长。

Copy

Copy

# 这是装饰函数
def timer(func):
    def wrapper(*args, **kw):
        t1=time.time()
        # 这是函数真正执行的地方
        func(*args, **kw)
        t2=time.time()

        # 计算下时长
        cost_time = t2-t1
        print("花费时间:{}秒".format(cost_time))
    return wrapper

假如,我们的函数是要睡眠10秒。这样也能更好的看出这个计算时长到底靠不靠谱。

Copy

Copy

import time

@timer
def want_sleep(sleep_time):
    time.sleep(sleep_time)

want_sleep(10)

来看看,输出。真的是10秒耶。真历害!!!

Copy

Copy

花费时间:10.0073800086975098秒

04. 进阶用法:带参数的函数装饰器#

通过上面简单的入门,你大概已经感受到了装饰的神奇魅力了。

不过,装饰器的用法远不止如此。我们今天就要把这个知识点讲透。

上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。

如果你有经验,你一定经常在项目中,看到有的装饰器是带有参数的。

装饰器本身是一个函数,既然做为一个函数都不能携带函数,那这个函数的功能就很受限。只能执行固定的逻辑。这无疑是非常不合理的。而如果我们要用到两个内容大体一致,只是某些地方不同的逻辑。不传参的话,我们就要写两个装饰器。小明觉得这不能忍。

那么装饰器如何实现传参呢,会比较复杂,需要两层嵌套。

同样,我们也来举个例子。

我们要在这两个函数的执行的时候,分别根据其国籍,来说出一段打招呼的话。

Copy

Copy

def american():
    print("我来自中国。")

def chinese():
    print("I am from America.")

在给他们俩戴上装饰器的时候,就要跟装饰器说,这个人是哪国人,然后装饰器就会做出判断,打出对应的招呼。

戴上帽子后,是这样的。

Copy

Copy

@say_hello("china")
def american():
    print("我来自中国。")

@say_hello("america")
def chinese():
    print("I am from America.")

万事俱备,只差帽子了。来定义一下,这里需要两层嵌套。

Copy

Copy

def say_hello(contry):
    def wrapper(func):
        def deco(*args, **kwargs):
            if contry == "china":
                print("你好!")
            elif contry == "america":
                print(‘hello.‘)
            else:
                return

            # 真正执行函数的地方
            func(*args, **kwargs)
        return deco
    return wrapper

执行一下

Copy

Copy

american()
print("------------")
chinese()

看看输出结果。

Copy

Copy

你好!
我来自中国。
------------
hello.
I am from America

emmmm,这很NB。。。

05. 高阶用法:不带参数的类装饰器#

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。

基于类装饰器的实现,必须实现 __call__ 和 __init__两个内置函数。
__init__ :接收被装饰函数
__call__ :实现装饰逻辑。

Copy

Copy

class logger(object):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print("[INFO]: the function {func}() is running..."            .format(func=self.func.__name__))
        return self.func(*args, **kwargs)

@logger
def say(something):
    print("say {}!".format(something))

say("hello")

执行一下,看看输出

Copy

Copy

[INFO]: the function say() is running...
say hello!

06. 高阶用法:带参数的类装饰器#

上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。 这就需要给类装饰器传入参数,给这个函数指定级别了。

带参数和不带参数的类装饰器有很大的不同。

__init__ :不再接收被装饰函数,而是接收传入参数。
__call__ :接收被装饰函数,实现装饰逻辑。

Copy

Copy

class logger(object):
    def __init__(self, level=‘INFO‘):
        self.level = level

    def __call__(self, func): # 接受函数
        def wrapper(*args, **kwargs):
            print("[{level}]: the function {func}() is running..."                .format(level=self.level, func=func.__name__))
            func(*args, **kwargs)
        return wrapper  #返回函数

@logger(level=‘WARNING‘)
def say(something):
    print("say {}!".format(something))

say("hello")

我们指定WARNING级别,运行一下,来看看输出。

Copy

Copy

[WARNING]: the function say() is running...
say hello!

07. 使用偏函数与类实现装饰器#

绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。

事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象

对于这个 callable 对象,我们最熟悉的就是函数了。

除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个盒子已经接触过了),还有比较少人使用的偏函数也是 callable 对象。

接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。

如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

Copy

Copy

import time
import functools

class DelayFunc:
    def __init__(self,  duration, func):
        self.duration = duration
        self.func = func

    def __call__(self, *args, **kwargs):
        print(f‘Wait for {self.duration} seconds...‘)
        time.sleep(self.duration)
        return self.func(*args, **kwargs)

    def eager_call(self, *args, **kwargs):
        print(‘Call without delay‘)
        return self.func(*args, **kwargs)

def delay(duration):
    """
    装饰器:推迟某个函数的执行。
    同时提供 .eager_call 方法立即执行
    """
    # 此处为了避免定义额外函数,
    # 直接使用 functools.partial 帮助构造 DelayFunc 实例
    return functools.partial(DelayFunc, duration)

我们的业务函数很简单,就是相加

Copy

Copy

@delay(duration=2)
def add(a, b):
    return a+b

来看一下执行过程

Copy

Copy

>>> add    # 可见 add 变成了 Delay 的实例
<__main__.DelayFunc object at 0x107bd0be0>
>>>
>>> add(3,5)  # 直接调用实例,进入 __call__
Wait for 2 seconds...
8
>>>
>>> add.func # 实现实例方法
<function add at 0x107bef1e0>

08. 如何写能装饰类的装饰器?#

用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。

以下便是我自己写的装饰器版的单例写法。

Copy

Copy

instances = {}

def singleton(cls):
    def get_instance(*args, **kw):
        cls_name = cls.__name__
        print(‘===== 1 ====‘)
        if not cls_name in instances:
            print(‘===== 2 ====‘)
            instance = cls(*args, **kw)
            instances[cls_name] = instance
        return instances[cls_name]
    return get_instance

@singleton
class User:
    _instance = None

    def __init__(self, name):
        print(‘===== 3 ====‘)
        self.name = name

可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。

其实例化的过程,你可以参考我这里的调试过程,加以理解。

09. wraps 装饰器有啥用?#

在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?

先来看一个例子

Copy

Copy

def wrapper(func):
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行func 和下边 decorator(func) 是等价的,所以上面 func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是 inner_function

Copy

Copy

def wrapper(func):
    def inner_function():
        pass
    return inner_function

def wrapped():
    pass

print(wrapper(wrapped).__name__)
#inner_function

那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

Copy

Copy

from functools import update_wrapper

WRAPPER_ASSIGNMENTS = (‘__module__‘, ‘__name__‘, ‘__qualname__‘, ‘__doc__‘,
                       ‘__annotations__‘)

def wrapper(func):
    def inner_function():
        pass

    update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)

准确点说,wraps 其实是一个偏函数对象(partial),源码如下

Copy

Copy

def wraps(wrapped,
          assigned = WRAPPER_ASSIGNMENTS,
          updated = WRAPPER_UPDATES):
    return partial(update_wrapper, wrapped=wrapped,
                   assigned=assigned, updated=updated)

可以看到wraps其实就是调用了一个函数update_wrapper,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:

Copy

Copy

from functools import update_wrapper

def wrapper(func):
    def inner_function():
        pass
    update_wrapper(func, inner_function)
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
# wrapped

10. 内置装饰器:property#

以上,我们介绍的都是自定义的装饰器。

其实Python语言本身也有一些装饰器。比如property这个内建装饰器,我们再熟悉不过了。

它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。

通常我们给实例绑定属性是这样的

Copy

Copy

class Student(object):
    def __init__(self, name, age=None):
        self.name = name
        self.age = age

# 实例化
XiaoMing = Student("小明")

# 添加属性
XiaoMing.age=25

# 查询属性
XiaoMing.age

# 删除属性
del XiaoMing.age

但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。

Copy

Copy

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    def set_age(self, age):
        if not isinstance(age, int):
            raise ValueError(‘输入不合法:年龄必须为数值!‘)
        if not 0 < age < 100:
            raise ValueError(‘输入不合法:年龄范围必须0-100‘)
        self._age=age

    def get_age(self):
        return self._age

    def del_age(self):
        self._age = None

XiaoMing = Student("小明")

# 添加属性
XiaoMing.set_age(25)

# 查询属性
XiaoMing.get_age()

# 删除属性
XiaoMing.del_age()

上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的。

Copy

Copy

# 赋值
XiaoMing.age = 25

# 获取
XiaoMing.age

那么这样的方式我们如何实现呢。请看下面的代码。

Copy

Copy

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    @property
    def age(self):
        return self._age

    @age.setter
    def age(self, value):
        if not isinstance(value, int):
            raise ValueError(‘输入不合法:年龄必须为数值!‘)
        if not 0 < value < 100:
            raise ValueError(‘输入不合法:年龄范围必须0-100‘)
        self._age=value

    @age.deleter
    def age(self):
        del self._age

XiaoMing = Student("小明")

# 设置属性
XiaoMing.age = 25

# 查询属性
XiaoMing.age

# 删除属性
del XiaoMing.age

@property装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter@age.deleter

@age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。
@age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。

property 的底层实现机制是「描述符」,为此我还写过一篇文章。

这里也介绍一下吧,正好将这些看似零散的文章全部串起来。

如下,我写了一个类,里面使用了 property 将 math 变成了类实例的属性

Copy

Copy

class Student:
    def __init__(self, name):
        self.name = name

    @property
    def math(self):
        return self._math

    @math.setter
    def math(self, value):
        if 0 <= value <= 100:
            self._math = value
        else:
            raise ValueError("Valid value must be in [0, 100]")

为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。

不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。

这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。

代码如下:

Copy

Copy

class TestProperty(object):

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        print("in __get__")
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError
        return self.fget(obj)

    def __set__(self, obj, value):
        print("in __set__")
        if self.fset is None:
            raise AttributeError
        self.fset(obj, value)

    def __delete__(self, obj):
        print("in __delete__")
        if self.fdel is None:
            raise AttributeError
        self.fdel(obj)

    def getter(self, fget):
        print("in getter")
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        print("in setter")
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        print("in deleter")
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

然后 Student 类,我们也相应改成如下

Copy

Copy

class Student:
    def __init__(self, name):
        self.name = name

    # 其实只有这里改变
    @TestProperty
    def math(self):
        return self._math

    @math.setter
    def math(self, value):
        if 0 <= value <= 100:
            self._math = value
        else:
            raise ValueError("Valid value must be in [0, 100]")

为了尽量让你少产生一点疑惑,我这里做两点说明:

  1. 使用TestProperty装饰后,math 不再是一个函数,而是TestProperty 类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math
  2. 第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入 TestProperty.__set__,当对math 进行取值里,就会进入 TestProperty.__get__。仔细一看,其实最终访问的还是Student实例的 _math 属性。

说了这么多,还是运行一下,更加直观一点。

Copy

Copy

# 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个math
in setter
>>>
>>> s1.math = 90
in __set__
>>> s1.math
in __get__
90

如对上面代码的运行原理,有疑问的同学,请务必结合上面两点说明加以理解,那两点相当关键。

11. 其他装饰器:装饰器实战#

读完并理解了上面的内容,你可以说是Python高手了。别怀疑,自信点,因为很多人都不知道装饰器有这么多用法呢。

在我看来,使用装饰器,可以达到如下目的:

  • 使代码可读性更高,逼格更高;
  • 代码结构更加清晰,代码冗余度更低;

刚好我在最近也有一个场景,可以用装饰器很好的实现,暂且放上来看看。

这是一个实现控制函数运行超时的装饰器。如果超时,则会抛出超时异常。

有兴趣的可以看看。

Copy

Copy

import signal

class TimeoutException(Exception):
    def __init__(self, error=‘Timeout waiting for response from Cloud‘):
        Exception.__init__(self, error)

def timeout_limit(timeout_time):
    def wraps(func):
        def handler(signum, frame):
            raise TimeoutException()

        def deco(*args, **kwargs):
            signal.signal(signal.SIGALRM, handler)
            signal.alarm(timeout_time)
            func(*args, **kwargs)
            signal.alarm(0)
        return deco
    return wraps

原文地址:https://www.cnblogs.com/ellisonzhang/p/11196390.html

时间: 2024-09-29 20:31:05

一篇文章搞懂装饰器所有用法的相关文章

一篇文章搞懂python2、3编码

说在前边: 编码问题一直困扰着每一个程序员的编程之路,如果不将它彻底搞清楚,那么你的的这条路一定会走的格外艰辛,尤其是针对使用python的程序员来说,这一问题更加显著, 因为python有两个版本,这两个版本编码格式却完全不同,但我们却经常需要兼顾这两个版本,所以出现各种问题的几率就大了很多. 所以在这里我试图用一篇文章来彻底梳理整个python语言的编码问题,尽量降低以后在这方面举到问题的可能性. ps 此文一定程度上参考和引用了alex的博客:“https://www.cnblogs.co

一篇文章搞懂到底什么是渲染流水线

本文实际上是<Unity Shader入门精要>一书的读书笔记,书中关于渲染流水线的讲解清楚易懂,非常适合作为Shader学习的入门书籍.自知好记性不如烂笔头,遂将相关内容再结合自己的一些理解写作这篇博客记录下来. 我们将图像绘制的流程称为渲染流水线,是由CPU和GPU协作完成的.一般一个渲染流程可以分成3个概念阶段,分别是:应用阶段(Application Stage),几何阶段(Geometry Stage),光栅化阶段(Rasterizer Stage). 应用阶段 应用阶段是在CPU中

一篇文章搞懂DOM

学习JavaScript肯定是会遇到DOM操作,那么什么是DOM?它又是干嘛用的?这篇文章为你揭晓答案. DOM是document object model的缩写,简称文档对象模型. 简单的说DOM是一套对文档的内容进行抽象和概念化的方法.我们可以把HTML文档模型化,当作对象来处理. 基本概念: 文档(document): HTML或XML文件. 节点(node):HTML文档中的所有内容都可以称之为节点,常见的节点有 元素节点 属性节点 文本节点 注释节点. 元素(element): HTM

一篇文章搞懂DataSet、DataFrame、RDD-《每日五分钟搞定大数据》

1. 三者共性: 1.RDD.DataFrame.Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2.三者都有惰性机制,执行trainform操作时不会立即执行,遇到Action才会执行 3.三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出 4.三者都有partition的概念,如 var predata=data.repartition(24).mapPartitions{       PartLine => {     

一篇文章搞懂Android组件化

网上组件化的文章很多,我本人学习组建化的过程也借鉴了网上先辈们的文章.但大多数文章都从底层的细枝末节开始讲述,由下而上给人一种这门技术“博大精深”望而生畏的感觉.而我写这篇文章的初衷就是由上而下,希望别人在阅读的过程中能够觉得“组件化原来也就是这几个东西”的感觉. 首先我们来看一下组件化项目和传统项目的区别 在传统的项目里 我们通常情况下会有一个commonLib的Libary模块和一个app的application模块,业务中的逻辑都写在app中各个功能模块放到不同的包下.这样做有以下几个主要

【朝花夕拾】一篇文章搞懂Android跨进程通信

前言 只要是面试中高级工程师岗位,Android跨进程通信就是最受面试官青睐的知识点.Android系统的运行由大量相互独立的进程相互协助来完成的,所以Android进程间通信问题,是做好Android开发高级工程师必须要跨过的一道坎.如果您还对这方面的知识还做不到如数家珍,那就和我一起来攻克它吧! 本文主要包含了如下内容: 其行文脉络大致如下,希望能加深读者对这方面内容的记忆:(1)Android基于Linux系统,所以先说系统进程相关知识和Linux IPC.(2)总结Android的IPC

一篇文章搞懂Nginx是什么,能干什么

Nginx的产生 没有听过Nginx?那么一定听过它的"同行"Apache吧!Nginx同Apache一样都是一种WEB服务器.基于REST架构风格,以统一资源描述符(Uniform Resources Identifier)URI或者统一资源定位符(Uniform Resources Locator)URL作为沟通依据,通过HTTP协议提供各种网络服务. 然而,这些服务器在设计之初受到当时环境的局限,例如当时的用户规模,网络带宽,产品特点等局限并且各自的定位和发展都不尽相同.这也使得

一篇文章搞懂android存储目录结构

前言 前两天因为开发一个app更新的功能,我将从服务器下载的apk文件放在了内部存储目录(测试手机为小米,路径为:data/user/0/packagename/files)下面,然后安装的时候一直安装不了,提示解析包出错.后来查询发现,安装apk是调用了PackageInstaller,没有相关权限,这个无法获取内部路径,所以会安装不了.借机也复习了一遍Android下面存储相关的知识点,特来总结一番. 存储分类 对于Android存储目录,我总结成一张思维导图,如果有需要原图的,请在我的公众

一篇文章搞懂移位运算

前提知识: 1. 计算机中对于有符号数的表示有三种方式,原码,补码,反码. 2. 在Java中,二进制数最高位是符号位,0表示正数,1表示负数: 3. 正数的表示,例如byte/int 数3,  二进制就是 0000 0011,负数的表示稍微麻烦一点(负数在计算机中是以补码的形式存储的) -5 的二进制: 1. -5的绝对值二进制表示  0000 0101 2. 然后求这个数的反码  1111 1010 3. 将反码加1 变成  1111 1011 , 这个就是-5的二进制表示(补码) 移位运算