word2vec高效训练方法

在word2vec原理中讲到如果每个词向量由300个元素组成,并且一个单词表中包含了10000个单词。回想神经网络中有两个权重矩阵——一个在隐藏层,一个在输出层。这两层都具有300 x 10000 = 3,000,000个权重!使用梯度下降法在这种巨大的神经网络下面进行训练是很慢的。并且可能更糟糕的是,你需要大量的训练数据来调整这些权重来避免过拟合。上百万的权重乘以上十亿的训练样本,意味着这个模型将会是一个超级大怪兽!这时就要采用负样本和层级softmax来优化。

word2vec的C代码中使用了一个公式来计算给出特定单词时候单词表中的单词出现的概率。

wi代表单词,z(wi)代表在总的语料库中的一个概率。比如说,如果单词”peanut”在1十亿的单词库中出现了1000次,那么z(‘peanut’) = 1e-6。

这也是代码中名为“采样”的一个来控制重采样频率的一个参数,它的默认值为0.001。更小的“采样”参数意味着单词被保存下来的几率更小。

1. 负样本

训练一个神经网络意味着使用一个训练样本就要稍微调整一下所有的神经网络权重,这样才能够确保预测训练样本更加精确。换句话说,每个训练样本都会改变神经网络中的权重。

单词表的大小意味着我们的skip-gram神经网络拥有非常庞大的权重数,所有权重都会被十亿个样本中的一个稍微地进行更新!

负采样通过使每一个训练样本仅仅改变一小部分的权重而不是所有权重,从而解决这个问题。下面介绍它是如何进行工作的。

当通过(”fox”, “quick”)词对来训练神经网络时,我们回想起这个神经网络的“标签”或者是“正确的输出”是一个one-hot向量。也就是说,对于神经网络中对应于”quick”这个单词的神经元对应为1,而其他上千个的输出神经元则对应为0。

使用负采样,我们通过随机选择一个较少数目(比如说5个)的“负”样本来更新对应的权重。(在这个条件下,“负”单词就是我们希望神经网络输出为0的神经元对应的单词)。并且我们仍然为我们的“正”单词更新对应的权重(也就是当前样本下”quick”对应的神经元)。

论文说选择5~20个单词对于较小的样本比较合适,而对于大样本,我们可以选择2~5个单词。

如果我们模型的输出层有大约300 x 10,000维度的权重矩阵。所以我们只需要更新正确的输出单词”quick”的权重,加上额外的5个其他应该输出为0的单词的权重。也就是总共6个输出神经元,和总共1800个的权重值。这些总共仅仅是输出层中3百万个权重中的0.06%。

2. 层次softmax

softmax需要对每个词语都计算输出概率,并进行归一化,计算量很大;

进行softmax的目的是多分类,那么是否可以转成多个二分类问题呢, 如SVM思想? 从而引入了层次softmax

为什么有效?

1)用huffman编码做词表示

2)把N分类变成了log(N)个2分类。 如要预测的term(足球)的编码长度为4,则可以把预测为‘足球‘,转换为4次二分类问题,在每个二分类上用二元逻辑回归的方法(sigmoid);

3)逻辑回归的二分类中,sigmoid函数导数有很好的性质,σ′(x)=σ(x)(1−σ(x))σ′(x)=σ(x)(1−σ(x))

4)采用随机梯度上升求解二分类,每计算一个样本更新一次误差函数

注:gensim的word2vec 默认已经不采用分层softmax了, 因为log21000=10log21000=10也挺大的;如果huffman的根是生僻字,则分类次数更多。

参考文献:

https://blog.csdn.net/qq_28444159/article/details/77514563

http://flyrie.top/2018/10/31/Word2vec_Hierarchical_Softmax/

https://www.cnblogs.com/liyuxia713/p/11185028.html

原文地址:https://www.cnblogs.com/cymx66688/p/11223087.html

时间: 2024-10-12 22:45:45

word2vec高效训练方法的相关文章

重磅︱文本挖掘深度学习之word2vec的R语言实现

笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼"深度学习在自然语言领域开始发力 了". 基于word2vec现在还出现了doc2vec,word2vec相比传统,考虑单词上下文的语义:但是doc2vec不仅考虑了单词上下文的语义,还考虑了单词在段落中的顺序. 如果想要了解word2vec的实现原理,应该读一读官网后面的三篇参考文献.显然,最主要的应该是这篇: Distributed

word2vec词向量训练及中文文本相似度计算

本文是讲述如何使用word2vec的基础教程,文章比较基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简单介绍 参考:<Word2vec的核心架构及其应用 · 熊富林,邓怡豪,唐晓晟 · 北邮2015年> <Word2vec的工作原理及应用探究 · 周练 · 西安电子科技大学

黑马程序员前端培训:高效的前端编程入门训练方法

如今,“前端”这个词已经成为一个大方向的概念,其涵盖的范围可以说非常广:比如浏览器的网页开发.移动App开发.桌面应用开发等等.但是,立足到每一个具体的问题上,前端开发都需要使用到JavaScript这种编程语言.所以,前端学习基础的基础,是要掌握JavaScript这门编程语言. 黑马程序员前端培训,历时多年积累,开设了前端全栈课程.并且通过几千名学员的学习.工作反馈,总结与提炼出以下三点编程入门的训练方法,给想学习前端的初学者一些建议和参考.既然要入门就需要经历一些训练,编程是没有捷径的,可

NLP之——Word2Vec详解

2013年,Google开源了一款用于词向量计算的工具--word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训练结果--词向量(word embedding),可以很好地度量词与词之间的相似性.随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法.其实word2vec算法的背后是一个浅层神经网络.另外需要强调的一点是,word2vec是一个计算

word2vec 中的数学原理详解(一)目录和前言

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知

word2vec 中的数学原理详解(二)预备知识

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知

word2vec 中的数学原理详解(三)背景知识

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知

word2vec 中的数学原理详解(四)基于 Hierarchical Softmax 的模型

  word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟,出于好奇,我也成为了他们中的一员.读完代码后,觉得收获颇多,整理成文,给有需要的朋友参考. 相关链接 (一)目录和前言 (二)预备知

word2vec 中的数学原理详解

word2vec 中的数学原理详解 word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感.一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟. 第一次接触 word2vec 是 2013 年的 10 月份,当时读了复旦大学郑骁庆老师发表的论文