tensorflow中 tf.reduce_mean函数

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。

参考:https://blog.csdn.net/dcrmg/article/details/79797826

原文地址:https://www.cnblogs.com/yibeimingyue/p/11517034.html

时间: 2024-10-29 04:32:23

tensorflow中 tf.reduce_mean函数的相关文章

【Tensorflow】tf.argmax函数

tf.argmax(input, axis=None, name=None, dimension=None) 此函数是对矩阵按行或列计算最大值 参数 input:输入Tensor axis:0表示按列,1表示按行 name:名称 dimension:和axis功能一样,默认axis取值优先.新加的字段 返回:Tensor  一般是行或列的最大值下标向量 例: import tensorflow as tf a=tf.get_variable(name='a', shape=[3,4], dtyp

(原)tensorflow中函数执行完毕,显存不自动释放

转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7608916.html 参考网址: https://stackoverflow.com/questions/39758094/clearing-tensorflow-gpu-memory-after-model-execution https://github.com/tensorflow/tensorflow/issues/1727#issuecomment-285815312s tensorflo

TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同

tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regularizerd()函数在tf 2.x版本中被弃用了. 两者都能用来L2正则化处理,但运算有一点不同. import tensorflow as tf sess = InteractiveSession() a = tf.constant([1, 2, 3], dtype=tf.float32) b =

TensorFlow如何通过tf.device函数来指定运行每一个操作的设备?

TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备. 这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器. TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称,来指定执行运算的设备.比如CPU在TensorFlow中的名称为/cpu:0. 在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称. –而一台机器上不同GPU的名称是不同的,第n个GPU在Tens

TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题

一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non

TensorFlow 中的 tf.train.exponential_decay() 指数衰减法

exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使用方式为 tf.train.exponential_decay( ) 在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数. 在训练模型时,通常建议随着训练的进行逐步降低学习率.该函数需要`global_step`值来计算衰减的学习速率. 该函数返回衰减后

tf.train.Saver()-tensorflow中模型的保存及读取

作用:训练网络之后保存训练好的模型,以及在程序中读取已保存好的模型 使用步骤: 实例化一个Saver对象 saver = tf.train.Saver() 在训练过程中,定期调用saver.save方法,像文件夹中写入包含当前模型中所有可训练变量的checkpoint文件 saver.save(sess,FLAGG.train_dir,global_step=step) 之后可以使用saver.restore()方法,重载模型的参数,继续训练或者用于测试数据 saver.restore(sess

tensorflow中四种不同交叉熵函数tf.nn.softmax_cross_entropy_with_logits()

Tensorflow中的交叉熵函数tensorflow中自带四种交叉熵函数,可以轻松的实现交叉熵的计算. tf.nn.softmax_cross_entropy_with_logits() tf.nn.sparse_softmax_cross_entropy_with_logits() tf.nn.sigmoid_cross_entropy_with_logits() tf.nn.weighted_cross_entropy_with_logits()注意:tensorflow交叉熵计算函数输入

[tf] tensorflow中dropout小坑记录

tensorflow中dropout小坑记录 几天看别人写的代码,有几行总觉得没什么用,自己写了小程序测试了下,果然. 虽然平时这么写的人不多,但是还是记录下吧. 对tensorflow使用时要转变下思维,和平时写的C++不太一样,只是建立了一个静态图. 在list中进行for循环,内部操作是局部变量操作,与原list无关. tf.nn.dropout操作,在随机舍掉部分节点的同时为了保证输出值的平稳会将保留下的节点数据除以keep_prob进行扩大. 赋值操作即使赋值给原数据,也是两个op节点