Matlab基础学习---------常用的数学函数实例学习

%% 求和函数
% 1、sum(x) 返回数组x所有值之和,x表示一个数组
% 实例
x=[1,2,3,4,5];
sum(x)
%结果:
% ans =
%     15

% 2、sum(X) 返回矩阵X各列元素之和的矩阵
X=[1,2,3;4,5,6;7,8,9]
sum(X)
%结果:
% X =
%      1     2     3
%      4     5     6
%      7     8     9
% ans =
%     12    15    18

% 3、cumsum(x) 返回一个数组x中元素累计和的向量
x
cumsum(x)
% 结果
% x =
%      1     2     3     4     5
% ans =
%      1     3     6    10    15

% 4、cumsum(X) 返回矩阵X各元素之和的矩阵
X
cumsum(X)
% 结果
% X =
%      1     2     3
%      4     5     6
%      7     8     9
% ans =
%      1     2     3
%      5     7     9
%     12    15    18

%% 乘积函数
% 1、prod(x) 返回数组x中各元素乘积,x为数组
x
prod(x)
%结果
% x =
%      1     2     3     4     5
% ans =
%    120

% 2、prod(X) 返回按照列向量的所有元素的乘积,组成一个行向量
X
prod(X)
% 结果
% X =
%      1     2     3
%      4     5     6
%      7     8     9
% ans =
%     28    80   162

%prod(A,dim) 给出dim维内的元素乘积  dim默认为1 有关dim介绍如下图
A=[1:3:7;2:3:8;3:3:9]
prod(A,1)
%结果
% ans =
%      6   120   504
prod(A,2)
%结果
% ans =
%     28
%     80
%    162
prod(A,3)
%结果
% ans =
%      1     4     7
%      2     5     8
%      3     6     9
prod(A,4)
%结果
% ans =
%      1     4     7
%      2     5     8
%      3     6     9

%3、cumprod(x) 返回一个x钟各元素累计乘积的向量
x=[2,2,2,2,2,2,2,2]
cumprod(x)
%结果
% x =
%      2     2     2     2     2     2     2     2
% ans =
%      2     4     8    16    32    64   128   256

%cumprod(A) 返回一个矩阵,列元素是A中列元素的累计乘积
A
cumprod(A)
%结果
% A =
%      1     4     7
%      2     5     8
%      3     6     9
% ans =
%      1     4     7
%      2    20    56
%      6   120   504

%cumprod(A,dim)  返回在dim维的累计乘积
A
cumprod(A,2)
%结果

%% 差分函数
% diff(x) 如果x=(x1,x2,x3...xn)则dif(x)=(x2-x1,x3-x2,x4-x3...xn-x(n-1))
x=[1 2 3 4 5 6]
diff(x)
%结果
% x =
%      1     2     3     4     5     6
% ans =
%      1     1     1     1     1

%diff(A) 在A第一维内计算相邻元素的差分
A
diff(A)
%结果
% A =
%      1     4     7
%      2     5     8
%      3     6     9
% ans =
%      1     1     1
%      1     1     1

%diff(x,k) 求出第K次差分,diff(x,2)相当于diff(diff(x))
x
diff(x,2)
%结果
% x =
%      1     2     3     4     5     6
% ans =
%      0     0     0     0

%diff(A,k,dim)在dim维求出第k次差分

%% 最大值和最小值
%max(x)返回x中的最大值,如果x为复数,则返回abs(x)的最大值
x
max(x)
y=[1 3 2+i 3+4i]
max(y)
%结果
% x =
%      1     2     3     4     5     6
% ans =
%      6
% y =
%    1.0000 + 0.0000i   3.0000 + 0.0000i   2.0000 + 1.0000i   3.0000 + 4.0000i
% ans =
%    3.0000 + 4.0000i

%max(A)返回一个矩阵,该矩阵元素包含矩阵A中第一维元素的最大值
A
max(A)
%结果
% A =
%      1     4     7
%      2     5     8
%      3     6     9
% ans =
%      3     6     9

%max(A,B) 返回与A,B同维数的矩阵,每个元素均为A,B矩阵相同位置元素的最大值
A
B=[1,2,3;4,5,6;7,8,9]
max(A,B)
%结果
% A =
%
%      1     4     7
%      2     5     8
%      3     6     9
% B =
%
%      1     2     3
%      4     5     6
%      7     8     9
% ans =
%      1     4     7
%      4     5     8
%      7     8     9

%最小值min的用法跟max相同

%% 简单统计命令
%mean(x)求向量x的算数平均值
%mean(x,dim)在dim维内计算
% median(x) %计算x中元素的中值
% median(A,dim)在dim维内计算中值
% std(x) 计算向量x中元素的标准差
%std(A,dim) 计算dim维标准差

%% 排序
%sort(x) 返回一个向量x的元素按照递增排序的向量,如果元素是复数,则按照abs(x)进行排序
x=[11 3 3 333 88]
sort(x)
%结果
% x =
%     11     3     3   333    88
% ans =
%      3     3    11    88   333

%[y,ind]=sort(x) 返回下标向量ind 即y=x(ind)
x
[y,ind]=sort(x)
%结果
% x =
%     11     3     3   333    88
% y =
%
%      3     3    11    88   333
% ind =
%      2     3     1     5     4

%sort(A,dim) 对A中各列按照递增排序,在dim维
A=[7 8 9;4 5 6;1 2 3]
sort(A)
%结果
% A =
%      7     8     9
%      4     5     6
%      1     2     3
% ans =
%      1     2     3
%      4     5     6
%      7     8     9
[B,ind]=sort(A)
%结果
% B =
%      1     2     3
%      4     5     6
%      7     8     9
% ind =
%      3     3     3
%      2     2     2
%      1     1     1

%sortrows(A,col) 对矩阵各行按照递增排序,复数以abs为主angle为辅进行排序;
%               如果给出了col则根据指定的列数进行排序
A=[11,2,33;3,1,23]
sortrows(A)
%结果
% A =
%     11     2    33
%      3     1    23
% ans =
%      3     1    23
%     11     2    33
A
sortrows(A,2)
% ans =
%
%      3     1    23
%     11     2    33
sortrows(A,1)
% ans =
%
%      3     1    23
%     11     2    33

时间: 2024-10-25 20:05:50

Matlab基础学习---------常用的数学函数实例学习的相关文章

iOS开发中常用的数学函数

/*---- 常用数学公式 ----*/ //指数运算 3^2 3^3 NSLog(@"结果 %.f", pow(3,2)); //result 9 NSLog(@"结果 %.f", pow(3,3)); //result 27 //开平方运算 NSLog(@"结果 %.f", sqrt(16)); //result 4 NSLog(@"结果 %.f", sqrt(81)); //result 9 //进一 NSLog(@&q

SAP (ABAP) 常用的数学函数

Function func Return value abs Absolute value of the argument arg (绝对值) sign Plus/minus sign of the argument arg: -1, if the value of arg is negative; 0 if the value of arg is 0; 1 if the value of arg is positive. (正负号) ceil Smallest integer number t

C语言基础学习6: 指向函数的指针

1.函数指针变量调用函数 1 #include <stdio.h> 2 int max(int x, int y); 3 int max(int x, int y) 4 { 5 int z; 6 if(x<y) 7 z = y; 8 else 9 z = x; 10 return z; 11 } 12 void main() 13 { 14 int a,b,c; 15 scanf("a=%d,b=%d",&a,&b); 16 c = max(a,b);

Matlab入门学习(矩阵、函数、绘图的基本使用)

一.矩阵 1.定义和简单使用(一般的编程语言,数组下标都是从0开始的,但是MATLAB是从1开始的) >> a=[1 4 7; 2 5 8; 3 6 9] a = 1 4 7 2 5 8 3 6 9 >> b=[2 3 4;3 4 5;4 5 3]; >> c=[1;2;3]; >> a+b ans = 3 7 11 5 9 13 7 11 12 >> a*b ans = 42 54 45 51 66 57 60 78 69 >> a

Matlab基础学习------------------函数的极值、积分问题Matlab实现

<span style="font-size:18px;">% 函数的积分问题Matlab实现 %% 函数极值点 % 1.一元函数的极小值点 % 实例:求f(x)=x^3-x^2-x+1在区间[-2,2]的极小值点 [email protected](x)x.^3-x.^2-x+1 x=fminbnd(f,-2,2) %使用fminbnd()函数求解一元函数的极小值点,参数分别为f(x)和区间短点 y=f(x) %极小值点对应的函数值 %结果 % f = % @(x)x.^

Matlab基础学习--------函数句柄

函数句柄是Matlab的一种常见数据类型. 函数句柄创建使用 @ 或者 str2func()来生成函数句柄. >> %创建一个cos()函数句柄 >> %方法1:[email protected] >> [email protected] hcos = @cos >> %方法2:fh = str2func('cos') >> fh = str2func('cos') fh = @cos >> functions(hcos) %使用fu

Matlab基础学习----------------------函数插值

%% 函数插值 % 比较常用的是用于实现一维数据插值的interp1,用于实现二维数据插值的interp2,lagrange,newton插值 % 一维插值 % YI=interp1(X,Y,XI,'method') % 函数根据X和Y的值计算函数在XI处的值.X和Y已知长度相同,用来描述采样点的信息 % XI是一个向量或者标量,描述插值点 % YI是根据样本点和插值点求出的值 % 注意:XI的范围不能超过X的取值范围,否则会出现NAN错误 % method是插值方法 % 实例: x=-pi:0

Matlab基础学习------------------函数微分

<span style="font-size:18px;">% 函数微分 % 函数微分比函数积困难,积分描述函数的整体性质,微分描述函数在某一点的斜率 % 由于微分非常困难,应尽量避免数值微分,特别是对实验获得的数据进行微分,这种情况下 % 最好用最小二乘曲线拟合这种数据,然后对多项式进行微分 % 1.使用diff()求解数值微分 % diff(x) % x为向量,所得值为[x(2)-x(1),x(3)-x(2),x(4)-x(3)...] % x是矩阵,得到矩阵的差分 %

Python函数基础学习(定义、函数参数、递归函数)

1.本程序是测试函数的基础.函数的参数.递归函数的测试. 函数的参数有: 必选参数.默认参数.可变参数.命名关键字参数和关键字参数 #!/usr/bin/python # -*- coding: utf-8 -*- #当程序存在中文时,注释表明使用utf-8编码解释 #函数学习 print('函数定义') def result(x,n=2): s = 1 while n>0: n = n-1 s = s*x return s #使用def定义一个函数,def 函数名(参数): print(res