大数据概念

大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》  中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

现在正是学习大数据的最好机遇,不花一分钱就可以成为大数据高手,实现年薪50万的梦想。

王家林的第一个中国梦:免费为全社会培养100万名优秀的大数据从业人员!

您可以通过王家林老师的微信号18610086859发红包捐助大数据、互联网+、O2O、工业4.0、微营销、移动互联网等系列免费实战课程, 目前已经发布的王家林免费视频全集如下:

1,《大数据不眠夜:Spark内核天机解密(共100讲)》:http://pan.baidu.com/s/1eQsHZAq

2,《Hadoop深入浅出实战经典》http://pan.baidu.com/s/1mgpfRPu

3,《Spark纯实战公益大讲坛》http://pan.baidu.com/s/1jGpNGwu

4,《Scala深入浅出实战经典》http://pan.baidu.com/s/1sjDWG25

5,《Docker公益大讲坛》http://pan.baidu.com/s/1kTpL8UF

6,《Spark亚太研究院Spark公益大讲堂》http://pan.baidu.com/s/1i30Ewsd

7,DT大数据梦工厂Spark、Scala、Hadoop的所有视频、PPT和代码在百度云网盘的链接:

http://pan.baidu.com/share/home?uk=4013289088#category/type=0&qq-pf-to=pcqq.group

王家林免费在51CTO发布的1000集合大数据spark、hadoop、scala、docker视频:

1,《Scala深入浅出实战初级入门经典视频课程》http://edu.51cto.com/lesson/id-66538.html

2,《Scala深入浅出实战中级进阶经典视频课程》http://edu.51cto.com/lesson/id-67139.html

3,《Akka深入浅出实战经典视频课程》http://edu.51cto.com/lesson/id-77672.html

4,《Spark亚太研究院决胜大数据时代公益大讲堂》http://edu.51cto.com/lesson/id-30815.html

5,《云计算Docker虚拟化公益大讲坛 》http://edu.51cto.com/lesson/id-61776.html

6,《Spark 大讲堂(纯实战手动操作)》http://edu.51cto.com/lesson/id-78653.html

7,《Hadoop深入浅出实战经典视频课程-集群、HDFS、Yarn、MapReduce》http://edu.51cto.com/lesson/id-77141.html

8,《从技术角度思考Hadoop到底是什么》http://edu.51cto.com/course/course_id-1151.html

“DT大数据梦工厂”团队第一个中国梦:免费为社会培养100万名优秀的大数据从业人员。每天早上4点起持续分享大数据、互联网+、O2O、工业4.0、微营销、移动互联网等领域的

精华内容,帮助您和公司在DT时代打造智慧大脑,将生产力提高百倍以上!

DT大数据梦工厂微信公众号:DT_Spark,二维码如下,期待大家加入!

时间: 2024-12-16 08:28:00

大数据概念的相关文章

大数据概念及应用

麦肯锡是最早提出大数据时代已经到来:“各个行业和领域都已经被数据给渗透了,目前数据已成为非常重要的生产因素了.对于大数据的处理和挖掘将意味着新一波的生产率不断增长和消费者盈余浪潮的到来.” 大数据概念最早是IBM定义的,将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速 Velocity),或者说特点有四个层面:第一,数据体量巨大.大数据的起始计量单位至少是P(1000个T).E(100万个T)或Z(10亿个 T);第二,数据类型繁多.比如,网络日志.视频.图

科学研究与大数据概念的滥用

Esri 中国 卢萌 突如一夜春风来,千树万树梨花开.2012年兴起的"大数据"潮流,让"data"这个IT圈子里面的名词一下风靡各个行业.可以说,没有任何一个IT界的术语能够受到如此之大的关注和使用.除了传统IT界以及和IT圈子相关的行业以外,各种如餐饮业.房地产业.金融业等都迫不及待的宣布了自己的"大数据"战略. 微软研究院的<第四范式:数据密集型的科学研究>,将人类的科学研究从实验型科学研究.理论型科学研究和模拟计算型科学研究三

大数据仅仅是概念还是有实用性

从去年开始,不管是互联网行业还是其他行业,“大数据”一词开始频繁出现. “概念”性质的东西在中国的互联网圈子总是可以快速传播,这里面有很多原因,其中就有整体氛围所致:大多数互联网的创业者都是希望通过前瞻性的创新来改变世界,受到资本追捧,最终套现.在这个过程中,概念飞快的传播.包装,成为各种打着标签的产品.而实用主义者只被动接受,缺乏正确认知深刻的探索. 从下图可以看出,2008年大数据概念开始传播后,在百度和Google的“大数据”和“Big Data”的检索趋势(下图数据中Baidu的PV加权

大数据基本概念

大数据概念想必大家都不陌生,毕竟是近年来最热门的话题之一.在计算机以及互联网如此普及的今天,我们所有人每天都会在互联网上产生大量的数据,例如在淘宝浏览商品时会产生数据,使用社交app进行即时通讯时也会产生数据,每天股市的上涨下跌及交易量也是数据......如此可见,每天互联网上产生的数据是有多庞大,数据可谓是无处不在: 但是数据量大,只是大数据概念的特征之一,大数据有4个特征简称4V特征: 在2001年,高德纳分析员道格·莱尼在一份与其2001年的研究相关的演讲中指出,数据增长有三个方向的挑战和

大数据日知录:架构与算法

大数据丛书 大数据日知录:架构与算法(大数据领域专家力作,专注大数据架构和算法,全面梳理大数据相关技术) 张俊林 著   ISBN 978-7-121-24153-6 2014年9月出版 定价:69.00元 404页 16开 编辑推荐 这是一本心血之作,历时3年,质量上乘. 从架构与算法的角度,比较全面地分门别类梳理了大数据相关技术. 本书内容紧跟技术前沿,讲解深入浅出,适合大数据领域所有技术人员. 书中还列有作者优选的高质量文献,能为读者节省选择的时间,绝对值得一读. 内容提要 大数据是当前最

大数据和「数据挖掘」是何关系?---来自知乎

知乎用户,互联网 244 人赞同 在我读数据挖掘方向研究生的时候:如果要描述数据量非常大,我们用Massive Data(海量数据)如果要描述数据非常多样,我们用Heterogeneous Data(异构数据)如果要描述数据既多样,又量大,我们用Massive Heterogeneous Data(海量异构数据)--如果要申请基金忽悠一笔钱,我们用Big Data(大数据) 编辑于 2014-02-2817 条评论感谢 收藏没有帮助举报作者保留权利 刘知远,NLPer 4 人赞同 我觉得 大数据

推荐文章:机器学习:“一文读懂机器学习,大数据/自然语言处理/算法全有了

PS:文章主要转载自CSDN大神"黑夜路人"的文章:          http://blog.csdn.NET/heiyeshuwu/article/details/43483655      本文主要对机器学习进行科普,包括机器学习的定义.范围.方法,包括机器学习的研究领域:模式识别.计算机视觉.语音识别.自然语言处理.统计学习和数据挖掘.这是一篇非常好的文章,尤其感学原文作者~          http://www.thebigdata.cn/JieJueFangAn/1308

大数据发展历程

一:大数据概念 大数据是由数量巨大.结构复杂.类型众多的数据结构的数据集合,在合理时间内,通过对该该数据集合的管理.处理.并整理成为能帮助政府机构和企业进行管理.决策的讯息. 二:大数据特点 大数据通常具有以下几种特点: 1.大量:即数据体量庞大,包括采集.存储和计算的量都非常大. 2.高速:要求处理速度快,从各类型的数据中快速获得高价值的信息 3.多样:数据种类繁多 4.价值:价值密度低,由于数据产生量巨大且速度非常快,必然形成各种有效数据和无效数据错杂的状态,因此数据价值的密度低. 5.在线

一文读懂机器学习,大数据/自然语言处理/算法全有了……

原文地址 http://www.open-open.com/lib/view/open1420615208000.html http://www.cnblogs.com/subconscious/p/4107357.html 引论 在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便全然不了解机器学习的人也能了解机器学习.而且上手相关的实践.这篇文档也算是 EasyPR开发的番外篇.从这里開始.必须对机器学习了解才干进一步介绍EasyPR的内核.当然,本文也面对一般读者.不会对阅读有