package wordcount;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount{
public static class WordMap extends Mapper<Object,Text,Text,IntWritable>{
private final static IntWritable one=new IntWritable(1);
private Text word = new Text();
public void map(Object key,Text value,Context context)throws IOException,InterruptedException{
String line=value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while(tokenizer.hasMoreTokens()){
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class WordReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
private IntWritable result =new IntWritable();
public void reduce(Text key,Iterable<IntWritable>values,Context context)
throws IOException,InterruptedException{
int sum=0;
for(IntWritable val:values)
{
sum+=val.get();
}
result.set(sum);
context.write(key,result);
}
}
public static void main(String[]args)throws Exception
{
Configuration conf =new Configuration();
Job job =new Job(conf,"WordCount");
job.setJarByClass(WordMap.class);
job.setMapperClass(WordMap.class);
job.setReducerClass(WordReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));//setOutputPath(job,new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
标准wordcount