UVA 10405 Longest Common Subsequence

最长公共子系列,简单的dp,不过注意有空格,所以,在读字符串的时候,尽量用gets读,这样基本没问题


#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
int dp[1001][1001];
int MAX(int x,int y)
{
if (x>y) return x;
else return y;
}
int main()
{
char str1[1001],str2[1001];
int sum;
while(gets(str1)!=NULL)
{
gets(str2);
memset(dp,0,sizeof(dp));
int len1,len2;
len1=strlen(str1);
len2=strlen(str2);
for (int i=1;i<=len1;i++)
for (int j=1;j<=len2;j++)
{
if (str1[i-1]==str2[j-1]) sum=1;
else sum=0;
dp[i][j]=MAX(dp[i-1][j],MAX(dp[i][j-1],dp[i-1][j-1]+sum));
}
cout<<dp[len1][len2]<<endl;
}
return 0;
}

UVA 10405 Longest Common Subsequence,布布扣,bubuko.com

时间: 2024-11-05 00:30:53

UVA 10405 Longest Common Subsequence的相关文章

uva 10405 Longest Common Subsequence (最长公共子序列)

uva 10405 Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, print the length of the longest common subsequence of both sequences. For example, the longest common subsequence of the following two sequences: abcdgh a

uva 10405 Longest Common Subsequence(最长公共子序列)

经典的最长公共子序列问题,我刚开始用string敲的,就是为了练练手,没想到竟然wa了,还以为我用错了呢...换了字符数还是wa...真无语,这么简单的题快把我弄糊涂了,后来听人说是输入可能有空格...这是巨坑啊,题上都没说清楚,白白wa了几发...就是设一个数组d[i][j]遍历两个字符数组当a[i]==b[j]的时候d[i][j]=d[i-1][j-1]+1.不相等的时候就是d[i][j]=max(d[i-1][j],d[i][j-1]).别忘了初始化.真坑 代码: #include<ios

Longest Common Subsequence

Problem statement: Given two strings, find the longest common subsequence (LCS). Your code should return the length of LCS. Have you met this question in a real interview? Yes Clarification What's the definition of Longest Common Subsequence? https:/

Dynamic Programming | Set 4 (Longest Common Subsequence)

首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", "bdf", "aeg", '"acefg"等都是"abcdefg"的子序列.因此,一个长度为n的序列拥有2^n中可能的子序列(序列中的每一个元素只有选或者不选两种可能,因此是2^n). Example: LCS for inp

uva10405 - Longest Common Subsequence(LIS,最长共同自序列)

题目:uva10405 - Longest Common Subsequence(LIS,最长共同自序列) 题目大意:找出两个字符串中的最长公共的子序列. 解题思路:这类问题是第一次接触,不知道怎么做.百度了一下,发现了递推公式:dp[i][j]:代表第一个字符串的前i个字符和第二个字符串的前j个字符比较能得到的最长的公共子序列.s[i] == s[j] ,dp[i][j] = dp[i - 1][j - 1] + 1: s[i] != s[j] , dp[i][j] = Max (dp[i][

[HackerRank] The Longest Common Subsequence

This is the classic LCS problem. Since it requires you to print one longest common subsequence, just use the O(m*n)-space version here. My accepted code is as follows. 1 #include <iostream> 2 #include <vector> 3 #include <algorithm> 4 5

[Algorithms] Longest Common Subsequence

The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the length of the longest sequence r, which is a subsequence of both s and t. Do you know the difference between substring and subequence? Well, substring i

HDU 2253 Longest Common Subsequence Again

其实这个题我还不会,学长给了一个代码交上去过了,据说用到了一种叫做位压缩的技术,先贴代码吧,以后看懂了再来写 #include <stdio.h> #include <string.h> #define M 30005 #define SIZE 128 #define WORDMAX 3200 #define BIT 32 char s1[M], s2[M]; int nword; unsigned int str[SIZE][WORDMAX]; unsigned int tmp1

Longest Common Subsequence (DP)

Given two strings, find the longest common subsequence (LCS). Your code should return the length of LCS. Example For "ABCD" and "EDCA", the LCS is "A" (or "D", "C"), return 1. For "ABCD" and &quo