动态时间规整DTW

来源: <http://www.cnblogs.com/flypiggy/p/3603192.html>
 在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。

这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和。

还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10
对应,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。

接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i][j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i][j];最后得到的output[5][5]就是我们所需要的DTW距离.



动态时间规整DTW是一个典型的优化问题,它用满足一定条件的的时间规整函数W(n)描述输入模板和参考模板的时间对应关系,求解两模板匹配时累计距离最小所对应的规整函数。

DTW
( Dynamic Time Warping ),即「动态时间扭曲」或是「动态时间规整」。这是一套根基于「动态规划」(Dynamic
Programming,简称DP)的方法,可以有效地将搜寻比对的时间大幅降低。
DTW
的目标就是要找出两个向量之间的最短距离。一般而言,对于两个 n 维空间中的向量 x 和
y,它们之间的距离可以定义为两点之间的直线距离,称为尤拉距离(Euclidean Distance)。
dist(x,
y) = |x – y| ,
但是如果向量的长度不同,那它们之间的距离,就无法使用上述的数学式來计算。一般而言,假設这两个向量的元素位置都是代表时间,由于我们必須容忍在时间轴的偏差,因此我们並不知道两个向量的元素对应关系,因此我们必須靠着一套有效的运算方法,才可以找到最佳的对应关系。



动态规划算法总体思想
动态规划算法基本思想是将待求解问题分解成若干个子问题
但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。求解时,有些子问题被重复计算了许多次。
如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。

动态规划基本步骤
找出最优解的性质,并刻划其结构特征。
递归地定义最优值。
以自底向上的方式计算出最优值。
根据计算最优值时得到的信息,构造最优解


这个例子中假设标准模板R为字母ABCDEF(6个),测试模板T为1234(4个)。R和T中各元素之间的距离已经给出。如下:

既然是模板匹配,所以各分量的先后匹配顺序已经确定了,虽然不是一一对应的。现在题目的目的是要计算出测试模板T和标准模板R之间的距离。因为2个模板的长度不同,所以其对应匹配的关系有很多种,我们需要找出其中距离最短的那条匹配路径。现假设题目满足如下的约束:当从一个方格((i-1,j-1)或者(i-1,j)或者(i,j-1))中到下一个方格(i,j),如果是横着或者竖着的话其距离为d(i,j),如果是斜着对角线过来的则是2d(i,j).其约束条件如下图像所示:

其中g(i,j)表示2个模板都从起始分量逐次匹配,已经到了M中的i分量和T中的j分量,并且匹配到此步是2个模板之间的距离。并且都是在前一次匹配的结果上加d(i,j)或者2d(i,j),然后取最小值。

所以我们将所有的匹配步骤标注后如下:

怎么得来的呢?比如说g(1,1)=4,
当然前提都假设是g(0,0)=0,就是说g(1,1)=g(0,0)+2d(1,1)=0+2*2=4.

g(2,2)=9是一样的道理。首先如果从g(1,2)来算的话是g(2,2)=g(1,2)+d(2,2)=5+4=9,因为是竖着上去的。

如果从g(2,1)来算的话是g(2,2)=g(2,1)+d(2,2)=7+4=11,因为是横着往右走的。

如果从g(1,1)来算的话,g(2,2)=g(1,1)+2*d(2,2)=4+2*4=12.因为是斜着过去的。

综上所述,取最小值为9. 所有g(2,2)=9.

当然在这之前要计算出g(1,1),g(2,1),g(1,2).因此计算g(I,j)也是有一定顺序的。

其基本顺序可以体现在如下:

计算了第一排,其中每一个红色的箭头表示最小值来源的那个方向。当计算了第二排后的结果如下:

最后都算完了的结果如下:

到此为止,我们已经得到了答案,即2个模板直接的距离为26.
我们还可以通过回溯找到最短距离的路径,通过箭头方向反推回去。如下所示:

来自为知笔记(Wiz)

动态时间规整DTW,布布扣,bubuko.com

时间: 2024-12-05 12:17:06

动态时间规整DTW的相关文章

动态时间规整(DTW) 转载

Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者Itakura提出),它出现的目的也比较单纯,是一种衡量两个长度不同的时间序列的相似度的方法.应用也比较广,主要是在模板匹配中,比如说用在孤立词语音识别(识别两段语音是否表示同一个单词),手势识别,数据挖掘和信息检索等中. 一.概述 在大部分的学科中,时间序列是数据的一种常见表示形式.对于时间序列处理来说,一个普遍的任务就是比较两个序列的相似性. 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别

语音信号处理之(一)动态时间规整(DTW)

语音信号处理之(一)动态时间规整(DTW) [email protected] 原文:http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第一个知识点:DTW.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. Dynamic Time Warping(DTW)诞生有一定的历史了(日本学者

动态时间规整算法

http://www.cnblogs.com/luxiaoxun/archive/2013/05/09/3069036.html Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词. 1. DTW方法原理 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同.而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很

算法笔记-DTW动态时间规整

算法笔记-DTW动态时间规整 简介 简单的例子 定义 讨论 约束条件 步模式 标准化 点与点的距离函数 具体应用场景 分类 点到点匹配 算法笔记-DTW动态时间规整 动态时间规整/规划(Dynamic Time Warping, DTW)是一个比较老的算法,大概在1970年左右被提出来,最早用于处理语音方面识别分类的问题. 1.简介 简单来说,给定两个离散的序列(实际上不一定要与时间有关),DTW能够衡量这两个序列的相似程度,或者说两个序列的距离.同时DTW能够对两个序列的延展或者压缩能够有一定

离散序列的一致性度量方法:动态时间规整(DTW)

动态时间规整:Dynamic Time Warping(DTW),是一种衡量两个离散时间序列相似度的方法,主要特点是在序列长度不一或x轴无法完全对齐的情况下,用满足一定条件的的时间规整函数描述两者之间的时间对应关系.DTW算法在各种模式匹配任务中被广泛使用,如语音识别.动态手势识别和信息检索等中. 一.算法简述 在数字信号处理领域中,时间序列是数据的一种常见表示形式.对于时间序列处理来说,对于许多的信号处理任务,如图像匹配.视频跟踪和姿态识别等,通常需要度量两个离散序列的相似性.而这一步骤说难不

动态时间归整/规整/弯曲(Dynamic time warping,DTW)

动态时间规整DTW 在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DT

动态规划-时间规整算法

在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语

js简单显示动态时间点

<input type="text" id="showtime" redayonly="redayonly" /> <script> function nowGetTime(){ var date=new Date(); document.getElementById("showtime").value=date.getFullYear()+"-"+(date.getMonth()+

在JSP页面中显示动态时间

源地址:http://blog.csdn.net/aitcax/article/details/41285305 静态时间: 1.页面首部添加 <%@page import="java.util.Date"%> 2.页面body中需要显示时间的地方使用 <%= new Date().toString() %> 即可. -------另:页面添加刷新按钮------ <input type="button" onclick="j