Principal axis theorem 主轴理论

Principal axis
theorem

From Wikipedia, the
free encyclopedia

In the mathematical fields
of geometry and linear
algebra
, a principal
axis
 is a certain line
in a Euclidean space associated to an ellipsoid or hyperboloid, generalizing
the major and minor axes
of an ellipse
. The principal axis theorem states that the principal axes are
perpendicular, and gives a constructive procedure for finding them.

Mathematically, the
principal axis theorem is a generalization of the method of completing
the square
 from elementary
algebra
. In linear
algebra
 and functional
analysis
, the principal axis theorem is a geometrical counterpart of
the spectral theorem. It
has applications to the statistics of principal
components analysis
 and
the singular
value decomposition
. In physics, the
theorem is fundamental to the study of angular momentum.

Contents


  [hide]

Motivation[edit]


The equations in the Cartesian
plane
 R2:



define, respectively, an
ellipse and a hyperbola. In each case, the x and y axes
are the principal axes. This is easily seen, given that there are no cross-termsinvolving
products xy in
either expression. However, the situation is more complicated for equations
like


Here some method is required
to determine whether this is an ellipse or a hyperbola. The basic observation is
that if, by completing the square, the expression can be reduced to a sum of two
squares then it defines an ellipse, whereas if it reduces to a difference of two
squares then it is the equation of a hyperbola:



Thus, in our example
expression, the problem is how to absorb the coefficient of the cross-term
8xy into the
functions u and v. Formally, this problem is
similar to the problem of matrix
diagonalization
, where one tries to find a suitable coordinate system in
which the matrix of a linear transformation is diagonal. The first step is to
find a matrix in which the technique of diagonalization can be applied.

The trick is to write the
equation in the following form:


where the cross-term has
been split into two equal parts. The matrix A in
the above decomposition is a symmetric matrix. In
particular, by the spectral theorem, it
hasreal eigenvalues and is diagonalizable by an orthogonal matrix (orthogonally
diagonalizable
).

To orthogonally
diagonalize A, one must
first find its eigenvalues, and then find an orthonormal eigenbasis.
Calculation reveals that the eigenvalues of A are


with corresponding
eigenvectors


Dividing these by their
respective lengths yields an orthonormal eigenbasis:


Now the matrix S = [u1 u2]
is an orthogonal matrix, since it has orthonormal columns, and A is diagonalized by:


This applies to the present
problem of "diagonalizing" the equation through the observation that


Thus, the equation is that
of an ellipse, since it is the sum of two squares.

It is tempting to simplify
this expression by pulling out factors of 2. However, it is important not to
do this. The quantities


have a geometrical meaning.
They determine an orthonormal coordinate
system
 on R2. In other words, they are obtained from the
original coordinates by the application of a rotation (and possibly a
reflection). Consequently, one may use the c1 and c2 coordinates to make statements
about length and
angles
 (particularly
length), which would otherwise be more difficult in a different choice of
coordinates (by rescaling them, for instance). For example, the maximum distance
from the origin on the ellipse c12 + 9c22 = 1 occurs when c2=0, so at the points c1=±1. Similarly, the minimum distance is
where c2=±1/3.

It is possible now to read
off the major and minor axes of this ellipse. These are precisely the individual
eigenspaces of the matrix A, since these are
where c2 = 0 orc1=0.
Symbolically, the principal axes are


To summarize:

  • The equation is for an ellipse, since both
    eigenvalues are positive. (Otherwise, if one were positive and the other
    negative, it would be a hyperbola.)

  • The principal axes are the lines spanned by
    the eigenvectors.

  • The minimum and maximum distances to the
    origin can be read off the equation in diagonal form.

Using this information, it
is possible to attain a clear geometrical picture of the ellipse: to graph it,
for instance.

Formal statement[edit]

The principal
axis theorem
 concern quadratic
forms
 in Rn, which are homogeneous
polynomial
s of degree 2. Any quadratic form may be represented as


where A is a symmetric matrix.

The first part of the
theorem is contained in the following statements guaranteed by the spectral
theorem:

  • The eigenvalues of A are real.

  • A is
    diagonalizable, and the eigenspaces of A are
    mutually orthogonal.

In particular, A is orthogonally diagonalizable,
since one may take a basis of each eigenspace and apply the Gram-Schmidt
process
 separately within
the eigenspace to obtain an orthonormal eigenbasis.

For the second part, suppose
that the eigenvalues of A are
λ1, ..., λn (possibly repeated according to their
algebraic multiplicities) and the corresponding orthonormal eigenbasis is u1,...,un. Then

where the ci are the coordinates with respect to
the given eigenbasis. Furthermore,

  • The i-th principal
    axis
     is the line
    determined by the n-1
    equations cj = 0, j ≠ i.
    This axis is the span of the vector ui.

Principal axis theorem 主轴理论,布布扣,bubuko.com

时间: 2024-12-18 23:04:30

Principal axis theorem 主轴理论的相关文章

Bounding volume

Bounding volume From Wikipedia, the free encyclopedia A three-dimensional model with its bounding box drawn in dashed lines. For building code compliance, see Bounding. In computer graphics and computational geometry, a bounding volume for a set of o

碰撞检测之Ray-Box检测

Separating Axis Theorem(分离轴理论) 在学习Ray-Box检测之前,首先来学习一些这个分离轴理论! 先说二维情况,一句话 Two convex polygons do not intersect if and only if there exists a line such that the projections of the two polygons onto the line do not intersect. 咳咳,翻译一下 两个凸包多边形,当且仅当存在一条线,这

antenna

Antenna (radio) For other uses, see Antenna. Part of a series on Antennas Common types[show] Components[show] Systems[show] Safety and regulation[show] Radiation sources / regions[show] Characteristics[show] Techniques[show] v t e This article needs

相机模型-计算机视觉

摄像机的基本成像模型, 通常称为针孔模型(pinhole model), 由三维空间到像平面的中心投影变换给出. 如上图(a)所示, 空间点Oc是投影中心, 它到平面π的距离为f. 空间点Xc在平面π上的投影(像)是以点Oc为端点并经过Xc的射线与平面π的交点. 平面π称为摄像机的像平面(image plane), 点Oc称为摄像机的光心(optical center), f称为摄像机的焦距(focus), 以点Oc为端点且垂直于像平面的射线称为光轴或主轴(principal axis), 主轴

C# Chart控件,chart、Series、ChartArea曲线图绘制的重要属性

原文有备份,如有错误和需要改进的地方,请不吝指正会继续修改的 8个月没写博客了- -,一来是有不想继续干开发的想法,二来是赖的写,三来还是不想总结.所以为了继续坚持自己的开发和总结的信念,总结一下C# chart控件的一些基本属性,由于属性太多了,一时半会儿写不完,以后继续补充,这里总结重要的常用的属性 为避免耽误不喜欢这种曲线图效果的亲们的时间,先看一下小DEMO效果图: 先简单说一下,从图中可以看到一个chart可以绘制多个ChartArea,每个ChartArea都可以绘制多条Series

flex 布局学习记录

一· 何为弹性布局 Flexbox布局的主要思想:给容器控制项目(子元素)的宽度和高度的能力,项目可自动填充容器的可用空间,以达到适配所有类型的设备和屏幕大小的目的.项目可自动放大以填补充可用空间,这是其他布局达不到的. 弹性布局适合组件和小规模的布局,大规模布局用Grid布局. 容器存在两个轴:main axis(主轴).cross(交叉轴).文字方向是 lrt ,主轴和容器左边框的交叉点是主轴的开始位置,叫做main start,与右边框的交叉点叫做main end.响应地,有 cross

旋转矩形碰撞检测 OBB方向包围盒算法

在cocos2dx中进行矩形的碰撞检测时需要对旋转过的矩形做碰撞检查,由于游戏没有使用Box2D等物理引擎,所以采用了OBB(Oriented bounding box)方向包围盒算法,这个算法是基于SAT(Separating Axis Theorem)分离轴定律的. 分离轴定律:两个凸多边形物体,如果我们能找到一个轴,使得两个在物体在该轴上的投影互不重叠,则这两个物体之间没有碰撞发生,该轴为Separating Axis.也就是说两个多边形在所有轴上的投影都发生重叠,则判定为碰撞:否则,没有

碰撞检测之Box-Box检测

2D情况 首先回顾一下SAP 两个凸包多边形,当且仅当存在一条线,这两个多边形在这条线上的投影不相交,则这两个多边形也不相交. 这条线称为Separating Axis.垂直Separating Axis存在一条Separating Line将两个多边形分开. 这里还有一个要确定的,就是如果两个矩形之间存在Separating Line,则一定存在一条和两个矩形中的一条边平行.每个矩形对边平行,则我们只需要检查四个方向是否存在Separating Line,如下图 找Separating Lin

碰撞检测之分离轴定理算法讲解

本文翻译自@sevenson的文章Separating Axis Theorem (SAT) Explanation .原文作者用的是ActionScript 3来编写算法,不过文中主要讲述的还是算法原理,我想一旦算法原理被我们掌握了,选择什么编程语言来实现算法都是次要的事情了. 本人并非英文专业,所以文中翻译得有不妥或疏漏之处,欢迎各位指正,谢谢! 正文如下: 分离轴定理(英文简称SAT)是一项用于检测凸多边形碰撞的技术. 我绝不是这个方面的专家,但当检测碰撞的需求出现在我面前之后,我做了大量