SPSS数据分析—多分类Logistic回归模型

前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型。

多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型

一、有序多分类Logistic回归模型

有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic回归模型,无论模型的分割点在什么位置,所拟合的这n-1个回归模型的自变量系数均保持不变,改变的只有常数项,这也是累积多分类Logit模型的前提条件,也称为平行线检验。

累积多分类Logit模型的常数项是负数,和二分类Logistic回归模型的常数项符号相反

下面看一个例子

现在想分析人们的工作满意度,选取了一些相关变量,数据如下

从数据中,可见因变量满意度satis有三个水平,因此考虑拟合有序多分类Logistic回归模型

分析—回归—有序









二、无序多分类Logistic回归模型

前面讲的有序分类Logistic回归模型,前提为因变量为有序多分类,但是当因变量为无序多分类或者不满足平行线假定时,就需要使用无序多分类Logistic回归模型。

无序多分类Logistic回归模型也是拟合因变量水平数-1个广义Logit模型,不同的是它需要先定义某一个水平为参照水平,其余水平和其进行对比,SPSS默认取水平最大者为参照水平。

例,通过一组数据,希望分析出不同背景人的投票倾向

图中可见因变量pres92为无序多分类变量,有三个水平,考虑使用无序多分类Logistic回归模型

分析—回归—多项Logistic



时间: 2024-12-25 10:43:49

SPSS数据分析—多分类Logistic回归模型的相关文章

SPSS数据分析—配对Logistic回归模型

Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型

logistic回归模型

一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例,因变量只能取0或1,但是拟合出的结果却无法保证只有这两个值. 那么使用概率的概念来进行拟合是否可以呢?答案也是否定的,因为1.因变量的概率和自变量之间的关系不是线性的,通常呈S型曲线,并且这种曲线是无法通过曲线直线化进行处理的.2.概率的取值应该在0-1之间,但是线性拟合的结果范围是整个实数集,并

Logistic 回归模型 第一遍阅读笔记

MLE :最大似然估计,求得的这套参数估计能够通过指定模型以最大概率在线样本观测数据 必须来自随机样本,自变量与因变量之间是线性关系 logistic 回归没有关于自变量分布的假设条件,自变量可以连续,也可以离散,不需要假设他们之间服从多元正太分布,当然如果服从,效果更好 logistic 回归对多元共线性敏感,自变量之间存在多元共线性会导致标准误差的膨胀   ???? 最大似然的性质: 一致性,渐进有效性,渐进正态性 一致性表示当样本规模增大时,模型参数向真值收敛,变得无偏 渐进有效性表示规模

SPSS数据分析—最优尺度回归

在之前介绍的线性回归模型中,有一个隐含的假设是自变量均为连续变量,但实际上自变量有时候是分类变量,类似于方差分析中的因素,这种分类自变量在回归分析中,也默认作为连续变量使用,这就会产生一个问题,如果是无序分类变量,那么各类别间没有高低之分,每变化一个单位,对于因变量的影响是相同的,无法分析当中的趋势,虽然可以使用哑变量,但是当分类变量过多或每个变量的类别水平过多时,这种方法非常繁琐,此外,当类别较多时,可能会存在某几个类别对因变量的作用相似,这是可分析的点,但是传统线性模型却将此信息忽略,造成信

ch9-脑外伤急救后迟发性颅脑损伤影响因素分析案例-logistic回归

卡方检验-考察分类变量相关性-“交叉表”或“设定表”中进行: t检验-考察连续变量与分类变量相关性-“设定表”中进行: 线性logsitic回归-研究分类因变量与一组自变量(可连续可分类)的关系: 树结构模型-研究自变量间是否存在交互作用 广义线性模型-在更广范畴建立模型. 1.案例背景 收集脑外伤急救病例样本,分析哪些因素导致急救后的脑损伤发生.因变量:是否出现迟发性脑损伤,为两分类变量:自变量:有连续性变量.分类变量. 卡方检验:研究分类变量之间的关系: 由于因变量是两分类变量,所以不能用普

SPSS数据分析—Probit回归模型

Probit含义为概率单位,和Logistic回归一样,Probit回归也用于因变量为分类变量的情况,通常情况下,两种回归方法的结果非常接近,但是由于Probit回归的结果解释起来比较抽象不易理解,因此应用不如Logistic回归那样广泛. Probit回归是基于正态分布理论上进行的,而Logistic回归是基于二项分布,这是二者的区别,当自变量中连续变量较多且符合正态分布时,可以考虑使用Probit回归,而自变量中分类变量较多时,可考虑使用Logistic回归. 在SPSS中,有两个过程可以进

SPSS—回归—二元Logistic回归案例分析

数据分析真不是一门省油的灯,搞的人晕头转向,而且涉及到很多复杂的计算,还是书读少了,小学毕业的我,真是死了不少脑细胞, 学习二元Logistic回归有一段时间了,今天跟大家分享一下学习心得,希望多指教! 二元Logistic,从字面上其实就可以理解大概是什么意思,Logistic中文意思为"逻辑"但是这里,并不是逻辑的意思,而是通过logit变换来命名的,二元一般指"两种可能性"就好比逻辑中的"是"或者"否"一样, Logis

【Python数据挖掘课程】九.回归模型LinearRegression简单分析氧化物数据

这篇文章主要介绍三个知识点,也是我<数据挖掘与分析>课程讲课的内容.同时主要参考学生的课程提交作业内容进行讲述,包括:        1.回归模型及基础知识:        2.UCI数据集:        3.回归模型简单数据分析. 前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.Kmeans聚类数据分析及Anaconda介绍       [Python数据挖掘课程]三.Kmeans聚类代码实现.作业及优化 

机器学习实战读书笔记(五)Logistic回归

Logistic回归的一般过程 1.收集数据:采用任意方法收集 2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳 3.分析数据:采用任意方法对数据进行分析 4.训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数 5.测试算法:一旦训练步骤完成,分类将会很快. 6.使用算法:首 先,我们需要输入一些数据,并将其转换成对应的结构化数值:接着,基于训练好的回归系数就可以对这些数值进行简单回归计算,判定它们属于哪个类别:在这之后,我们就可以在输