nio select poll epoll

一、

select poll 与 epoll的区别,可以参考以下三个链接

http://blog.csdn.net/turkeyzhou/article/details/8504554

http://www.cnblogs.com/Anker/p/3265058.html

http://www.cnblogs.com/zhuyp1015/p/3553320.html

总结一下

三者区别如下

(1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。

(2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。

epoll优点如下

epoll的优点:

1.支持一个进程打开大数目的socket描述符(FD)

  select 最不能忍受的是一个进程所打开的FD是有一定限制的,由FD_SETSIZE设置,默认值是1024/2048。对于那些需要支持的上万连接数目的IM服务器来说显然太少了。这时候你一是可以选择修改这个宏然后重新编译内核。不过 epoll则没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。

2.IO效率不随FD数目增加而线性下降

  传统的select/poll另一个致命弱点就是当你拥有一个很大的socket集合,不过由于网络延时,任一时间只有部分的socket是"活跃"的,但是select/poll每次调用都会线性扫描全部的集合,导致效率呈现线性下降。但是epoll不存在这个问题,它只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数,其他idle状态socket则不会,在这点上,epoll实现了一个"伪"AIO,因为这时候推动力在Linux内核。

3.使用mmap加速内核与用户空间的消息传递。

  这点实际上涉及到epoll的具体实现了。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就很重要,在这点上,epoll是通过内核与用户空间mmap同一块内存实现的。

  对于poll来说需要将用户传入的 pollfd 数组拷贝到内核空间,因为拷贝操作和数组长度相关,时间上这是一个O(n)操作,当事件发生,poll返回将获得的数据传送到用户空间并执行释放内存和剥离等待队列等善后工作,向用户空间拷贝数据与剥离等待队列等操作的的时间复杂度同样是O(n)。

epoll的主要优势在于回调函数,但是当socket中90%都是活跃的,epoll效率不一定就会高。(还需进一步了解)

二、

这里面有个概念需要理清楚,内核态 用户态

http://www.cnblogs.com/zemliu/p/3695503.html

内核态: CPU可以访问内存所有数据, 包括外围设备, 例如硬盘, 网卡. CPU也可以将自己从一个程序切换到另一个程序

用户态: 只能受限的访问内存, 且不允许访问外围设备. 占用CPU的能力被剥夺, CPU资源可以被其他程序获取

为什么要有用户态和内核态

由于需要限制不同的程序之间的访问能力, 防止他们获取别的程序的内存数据, 或者获取外围设备的数据, 并发送到网络, CPU划分出两个权限等级 -- 用户态 和 内核态

用户态与内核态的切换

所有用户程序都是运行在用户态的, 但是有时候程序确实需要做一些内核态的事情, 例如从硬盘读取数据, 或者从键盘获取输入等. 而唯一可以做这些事情的就是操作系统, 所以此时程序就需要先操作系统请求以程序的名义来执行这些操作.

这时需要一个这样的机制: 用户态程序切换到内核态, 但是不能控制在内核态中执行的指令

这种机制叫系统调用, 在CPU中的实现称之为陷阱指令(Trap Instruction)

他们的工作流程如下:

  1. 用户态程序将一些数据值放在寄存器中, 或者使用参数创建一个堆栈(stack frame), 以此表明需要操作系统提供的服务.
  2. 用户态程序执行陷阱指令
  3. CPU切换到内核态, 并跳到位于内存指定位置的指令, 这些指令是操作系统的一部分, 他们具有内存保护, 不可被用户态程序访问
  4. 这些指令称之为陷阱(trap)或者系统调用处理器(system call handler). 他们会读取程序放入内存的数据参数, 并执行程序请求的服务
  5. 系统调用完成后, 操作系统会重置CPU为用户态并返回系统调用的结果

三、以poll为例

http://blog.sina.com.cn/s/blog_7943319e0101a5dw.html

通过前面的分析,我们知道,应用程序中的open、read、write函数系统调用都会触发软中断异常,从而进入异常处理,在异常处理中将会获取用户态传入的系统调用号,根据系统调用号在系统调用表中索引出实际的系统调用处理函数,如内核里的sys_open、sys_read、sys_write函数,而内核里的这些函数又会对应到驱动程序里的open、read、write函数。

poll机制也不例外,用户空间里调用poll函数或者select函数时,都会调用到内核空间的sys_poll或者sys_select函数。

所以 这就涉及到了内存copy的问题。

时间: 2024-10-03 13:10:49

nio select poll epoll的相关文章

Linux下select&poll&epoll的实现原理(一)

最近简单看了一把Linux linux-3.10.25 kernel中select/poll/epoll这个几个IO事件检测API的实现.此处做一些记录.其基本的原理是相同的,流程如下 先依次调用fd对应的struct file.f_op->poll()方法(如果有提供实现的话),尝试检查每个提供待检测IO的fd是否已经有IO事件就绪 如果已经有IO事件就绪,则直接所收集到的IO事件返回,本次调用结束 如果暂时没有IO事件就绪,则根据所给定的超时参数,选择性地进入等待 如果超时参数指示不等待,则

I/O多路复用之select,poll,epoll简介

一.select 1.起源 select最早于1983年出现在4.2BSD中(BSD是早期的UNIX版本的分支). 它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作. 2.select的优点 目前几乎在所有的平台上支持,具有良好的跨平台支持. 3.select的缺点 单个进程能够监视的文件描述符的数量存在最大限制.默认情况下,在Linux上单个进程能够打开的最

select/poll/epoll on serial port

In this article, I will use three asynchronous conferencing--select, poll and epoll on serial port to transmit data between PC and Raspberry pi. Outline Character device file of serial port Naive serial communication Asynchronous conferencing Select

转一贴,今天实在写累了,也看累了--【Python异步非阻塞IO多路复用Select/Poll/Epoll使用】

下面这篇,原理理解了, 再结合 这一周来的心得体会,整个框架就差不多了... http://www.haiyun.me/archives/1056.html 有许多封装好的异步非阻塞IO多路复用框架,底层在linux基于最新的epoll实现,为了更好的使用,了解其底层原理还是有必要的.下面记录下分别基于Select/Poll/Epoll的echo server实现.Python Select Server,可监控事件数量有限制: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linux内核中网络数据包的接收-第二部分 select/poll/epoll

和前面文章的第一部分一样,这些文字是为了帮别人或者自己理清思路的,而不是所谓的源码分析,想分析源码的,还是直接debug源码最好,看任何文档以及书都是下策.因此这类帮人理清思路的文章尽可能的记成流水的方式,尽可能的简单明了. Linux 2.6+内核的wakeup callback机制 Linux 内核通过睡眠队列来组织所有等待某个事件的task,而wakeup机制则可以异步唤醒整个睡眠队列上的task,每一个睡眠队列上的节点都拥有一个 callback,wakeup逻辑在唤醒睡眠队列时,会遍历

Linux统系统开发12 Socket API编程3 TCP状态转换 多路IO高并发select poll epoll udp组播 线程池

[本文谢绝转载原文来自http://990487026.blog.51cto.com] Linux统系统开发12 Socket API编程3 TCP状态转换 多路IO高并发select  poll  epoll udp组播 线程池 TCP 11种状态理解: 1,客户端正常发起关闭请求 2,客户端与服务端同时发起关闭请求 3,FIN_WAIT1直接转变TIME_WAIT 4,客户端接收来自服务器的关闭连接请求 多路IO转接服务器: select模型 poll模型 epoll模型 udp组播模型 线

# 进程/线程/协程 # IO:同步/异步/阻塞/非阻塞 # greenlet gevent # 事件驱动与异步IO # Select\Poll\Epoll异步IO 以及selectors模块 # Python队列/RabbitMQ队列

1 # 进程/线程/协程 2 # IO:同步/异步/阻塞/非阻塞 3 # greenlet gevent 4 # 事件驱动与异步IO 5 # Select\Poll\Epoll异步IO 以及selectors模块 6 # Python队列/RabbitMQ队列 7 8 ############################################################################################## 9 1.什么是进程?进程和程序之间有什么

多进程、协程、事件驱动及select poll epoll

目录 -多线程使用场景 -多进程 --简单的一个多进程例子 --进程间数据的交互实现方法 ---通过Queues和Pipe可以实现进程间数据的传递,但是不能实现数据的共享 ---Queues ---Pipe ---通过Manager可以不同进程间实现数据的共享 --进程同步,即进程锁 --进程池 -协程 --先用yield实现简单的协程 --Greenlet --Gevent --用协程gevent写一个简单并发爬网页 -事件驱动 --IO多路复用 ---用户空间和内核空间 ---文件描述符fd

高性能服务器——I/O多路转接的三种模式(select &poll& epoll)

一.简单的服务器I/O模型 最简单的的TCP服务器,有三种模式: 1.单执行流,一个server端连接一个client端 2.多进程,一个server端通过多进程的方式,每个进程连接一个client端 3.多线程,一个server端通过多进程的方式,每个线程连接一个client端 (http://zhweizhi.blog.51cto.com/10800691/1830267) 这里实现过 要提升服务器性能,其实就是想要让一个server端能在负载允许的情况下,连接尽可能多的client端. 因