Multi-attention Network for One Shot Learning

Multi-attention Network for One Shot Learning

2018-05-15 22:35:50 

本文的贡献点在于:

1. 表明类别标签信息对 one shot learning 可以提供帮助,并且设计一种方法来挖掘该信息;

2. 提出一种 attention network 来产生 attention maps  for creating the image representation of an exemplar image in novel class based on its class tag.

3. 进一步的提出一种 multi-attention scheme 来提升模型的表现;

4. 收集了两个新的数据集,并且构建了一个评价标准。

本文的流程图:

Attention Map Generation:

本文 attention value 的计算也是依赖于 visual feature 和 language feature 之间的响应。大致过程如下:

1. 首先用 Word embedding 的方法,得到类别标签的特征 c,然后将该 feature 进一步的学习,可以用 lstm 或者 fc layer,即:

其中,w 和 b 都是可学习的模型参数。

2. 在得到 hidden state 之后,我们将其与 visual feature 进行相乘,得到响应:

3. 将 attention value 进行归一化处理:

4. 将attention values 和 features 进行相乘,得到加权之后的 feature:

Multi-Attention Mechanism: 

此处的 multi-attention mechanism 就是刚刚那个机制的一个拓展,用不同的参数,得到不同角度的 attention value。

--- Done !

原文地址:https://www.cnblogs.com/wangxiaocvpr/p/9043590.html

时间: 2024-10-14 06:42:25

Multi-attention Network for One Shot Learning的相关文章

Patchwork: A Patch-wise Attention Network for Efficient Object Detection and Segmentation in Video Streams

简介 受人类视觉注意力系统的启发,文章提出了一个叫Patchwork的模型,利用了记忆和注意力之间的微妙的相互作用来进行高效的视频处理. 图1:a) 视频流中的每个时间步,我们的方法仅仅处理当前帧的一个小的局部窗,但由于一系列有状态的Patchwork cells,仍然能解释整张输入帧. b) 状态patchwork cell的放大视图,通过之前状态的时间上下文特征来对当前特征进行调整. 图1a列出了Patchwork的概览.在每一个时间步,patchwork从输入帧上裁剪一个小窗送入一个特殊的

Paper | Residual Attention Network for Image Classification

目录 1. 相关工作 2. Residual Attention Network 2.1 Attention残差学习 2.2 自上而下和自下而上 2.3 正则化Attention 最近看了些关于attention的文章.Attention是比较好理解的人类视觉机制,但怎么用在计算机问题上并不简单. 实际上15年之前就已经有人将attention用于视觉任务,但为什么17年最简单的SENet取得了空前的成功?其中一个原因是,前人的工作大多考虑空间上的(spatial)注意力,而SENet另辟蹊径,

5、AFM(Attention+FM)-----Attentional Factorization Machines:Learning the Weight of Feature Interactions via Attention Network

1.摘要: 提出一个Attentional FM,Attention模型+因子分解机,其通过Attention学习到特征交叉的权重.因为很显然不是所有的二阶特征交互的重要性都是一样的,如何通过机器自动的从中学习到这些重要性是这篇论文解决的最重要的问题, 比如:作者举了一个例子,在句子"US continues taking a leading role on foreign payment transparency"中,除了"foreign payment transpare

Matching Networks for One Shot Learning

1. Introduction In this work, inspired by metric learning based on deep neural features and memory augment neural networks, authors propose matching networks that map a small labelled support set and an unlabelled example to its label. Then they defi

Online Resource Mapping for SDN Network Hypervisors using Machine Learning

发表时间:2016 一些定义: self-configuring networks: FlowVisor: FlowVisor是建立在OpenFlow之上的网络虚拟化工具,它可以将物理网络划分成多个逻辑网络,从而实现虚网划分. 数据中心: 百度百科定义:数据中心是全球协作的特定设备网络,用来在internet网络基础设施上传递.加速.展示.计算.存储数据信息. 维基百科:给出的定义是"数据中心是一整套复杂的设施.它不仅仅包括计算机系统和其它与之配套的设备(例如通信和存储系统),还包含冗余的数据通

【论文阅读】Second-order Attention Network for Single Image Super-Resolution

概要 近年来,深度卷积神经网络(CNNs)在单一图像超分辨率(SISR)中进行了广泛的探索,并获得了卓越的性能.但是,大多数现有的基于CNN的SISR方法主要聚焦于更宽或更深的体系结构设计上,而忽略了挖掘层间特征的内在相关性,从而阻碍了CNN的表示能力.为了解决这一问题,在本文中提出了一个二阶注意力网络(SAN),用于更强大的特征表达和特征相关性学习.特别地,开发了一种新颖的可训练的二阶通道注意力(SOCA)模块,以通过使用二阶特征统计量进行更具区分度的表示来自适应地重缩放通道级别的特征.此外,

CVPR 2017 Paper list

CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro

Deep Learning基础--理解LSTM/RNN中的Attention机制

导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加入LSTM/RNN模型中的attention机制是如何克服传统编码器-解码器结构存在的问题的. 通过阅读这篇博文,你将会学习到: 传

Unsupervised learning, attention, and other mysteries

Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of Machine Intelligence: Perspectives from Leading Practitioners” is available for download. The following interview is one of many that will be included