[NOI 2010]能量采集

Description

题库链接

给你一个 \(n\times m\) 的坐标轴。对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个点与坐标原点连线,线段穿过了除端点外的 \(k\) 个点。求所有点的贡献和。

\(1\leq n,m \leq 100000\)

Solution

容易发现 \(k=gcd(x,y)-1\) ,故原式等于求 \[\begin{aligned}&\sum_{i=1}^n\sum_{j=1}^m(2(gcd(i,j)-1)+1)\\=&2\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)-nm\end{aligned}\]

记 \(f(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^mgcd(i,j)\) ,考虑如何求 \(f(n,m)\) \[\begin{aligned}\Rightarrow&\sum_{d=1}^{min\{n,m\}}d\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[gcd(i,j)=1]\\=&\sum_{d=1}^{min\{n,m\}}d\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{k\mid gcd(i,j)}\mu(k)\\=&\sum_{d=1}^{min\{n,m\}}d\sum_{k=1}^{min\left\{\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor\right\}}\mu(k)\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor\end{aligned}\]

令 \(T=kd\) ,枚举 \(T\) \[\begin{aligned}\sum_{T=1}^{min\{n,m\}}\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor\sum_{d\mid T}d\cdot\mu\left(\frac{T}{d}\right)\end{aligned}\]

记后面那个狄利克雷卷积形式的式子为 \(F(T)\) ,显然这个是可以枚举因子在近似于 \(O(n~ln~n)\) 的时限内预处理出来的。然后数论分块的复杂度为 \(O(\sqrt n)\) ,对于 \(t\) 组询问...哦...没有 \(t\) 组询问...那我最后一步还搞个屁啊...

Code

//It is made by Awson on 2018.2.22
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 100000;
void read(int &x) {
    char ch; bool flag = 0;
    for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
    for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
    x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }

int n, m, mu[N+5];
LL F[N+5];

void get_F() {
    int isprime[N+5], prime[N+5], tot = 0;
    memset(isprime, 1, sizeof(isprime)); isprime[1] = 0, mu[1] = 1;
    for (int i = 2; i <= N; i++) {
    if (isprime[i]) mu[i] = -1, prime[++tot] = i;
    for (int j = 1; j <= tot && i*prime[j] <= N; j++)
        if (i%prime[j] != 0) isprime[i*prime[j]] = 0, mu[i*prime[j]] = -mu[i];
        else {isprime[i*prime[j]] = 0, mu[i*prime[j]] = 0; break; }
    }
    for (int i = 1; i <= N; i++) for (int j = 1; j*i <= N; j++) F[i*j] += i*mu[j];
    for (int i = 1; i <= N; i++) F[i] += F[i-1];
}
LL cal(int n, int m) {
    if (n > m) Swap(n, m); LL ans = 0;
    for (int i = 1, last; i <= n; i = last+1) {
    last = Min(n/(n/i), m/(m/i));
    ans += 1ll*(n/i)*(m/i)*(F[last]-F[i-1]);
    }
    return ans;
}
void work() {
    read(n), read(m); get_F(); writeln(2ll*cal(n, m)-1ll*n*m);
}
int main() {
    work(); return 0;
}

原文地址:https://www.cnblogs.com/NaVi-Awson/p/8457952.html

时间: 2024-10-12 01:48:31

[NOI 2010]能量采集的相关文章

●BZOJ 2005 NOI 2010 能量采集

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: 一个带有容斥思想的递推.%%% 首先,对于一个点 (x,y) 在路径 (0,0)->(x,y)上,经过的点数为 GCD(x,y)-1所以改点的贡献为 2*GCD(x,y)-1            N    M那么,ANS = ∑    ∑(2*GCD(i,j)-1)           i=1 j=1显然超时.考虑到 GCD<=100000,那么是否可以求出 f[i] 表

【NOI 2010】能量采集&amp;&amp;超级钢琴

其实这两个题一点关系都没有,同一天做的,写在一起= = 能量采集 ans=∑x=1n∑y=1m2?gcd(x,y)+1 ∑x=1n∑y=1m[d|gcd(x,y)]=?nd???md? code #include<iostream> #include<cstdio> #include<cstring> using namespace std; long long n,m,maxn; long long f[100001]; int main() { long long

NOI 能量采集

1 /** 2 大意: 求解 在[1,n] x, [1,m] y,之间有多少个gcd(x,y) = d d = min(n,m) 3 思路: 对于任意一个d 在[1,n] x, [1,m] y, gcd(x,y) 含有d 因子的个数为 n/i * m/i 这是所有含有因子d的组合的个数 , 再减去 gcd(x,y) = 2*d , gcd(x,y) = 3*d, gcd(x,y) = 4*d...那么最后得到的就是最大公约数为d的组合的个数 4 5 siga( 1-n ) * siga(1-m)

NOI2004 能量采集

CodeVS1937 能量采集 2010年NOI全国竞赛 题目描述 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋

NOI2010能量采集(数论)

没想到NOI竟然还有这种数学题,看来要好好学数论了-- 网上的题解: 完整的结题报告: 首先我们需要知道一个知识,对于坐标系第一象限任意的整点(即横纵坐标均为整数的点)p(n,m),其与原点o(0,0)的连线上除过原点整点的个数为gcd(n,m).其他象限上个数则为gcd(abs(n),abs(m)),这里的gcd(a,b)是指a与b的最大公约数(Greastest Common Divisor),abs(a)是指数a的绝对值.证明:考虑在op上最小的一个整点(x,y),这里的最小是指横纵坐标绝

[NOI2010]能量采集

469. [NOI2010]能量采集 ★★☆   输入文件:energy2010.in   输出文件:energy2010.out   简单对比时间限制:1 s   内存限制:512 MB [问题描述] 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x

【BZOJ 2005】[Noi2010]能量采集

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过

BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= n, 1 <= y <= m ) 的数对(x, y)个数. 这个不好求, 考虑容斥, 设f(i) 为含有公因数 i 的数对(x, y)(1 <= x <= n, 1 <= y <= m)个数 , 显然f(i) = (n / i) * (m / i). 则 g(i) = f

BZOJ 2005 能量采集

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过