●BZOJ 4176 Lucas的数论

题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4176

题解:

莫比乌斯反演,杜教筛

首先有这么一个结论:

令d(n)表示n的约数的个数(就是题目中的f(n)),则有

$$d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$$

●BZOJ 3994 [SDOI2015]约数个数和也用到了这个东西。

那么就下来接直接进行求ANS的式子的推导:

$$\begin{aligned}
ANS&=\sum_{n=1}^{N}\sum_{m=1}^{N}d(nm)\\
&=\sum_{n=1}^{N}\sum_{m=1}^{N}\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]\\
&=\sum_{n=1}^{N}\sum_{m=1}^{N}\sum_{i|n}\sum_{j|m}\sum_{d|gcd(i,j)}\mu(d)\\
&=\sum_{d=1}^{N}\mu(d)\sum_{d|i}\sum_{d|j}\sum_{i|n,n\leq N}\sum_{j|m,m\leq N} 1\\
&=\sum_{d=1}^{N}\mu(d)(\sum_{d|i}\lfloor \frac{N}{i} \rfloor)^2\\
&=\sum_{d=1}^{N}\mu(d)(\sum_{i=1}^{\lfloor \frac{N}{d} \rfloor}\lfloor \frac{N}{id} \rfloor)^2\end{aligned}$$

令$$f(n)=\sum_{i=1}^{n}\lfloor \frac{n}{i} \rfloor$$

则$$ANS=\sum_{d=1}^{N}\mu(d)f(\lfloor \frac{N}{d} \rfloor)^2$$

这个求ANS的式子是可以分块+杜教筛(求每块$\mu$的和)做的,

同时求f也可以分块求,

即这是一个块套块。。。

代码:

#include<bits/stdc++.h>
#define DJM /*5623413*/ 1000000
using namespace std;
const int mod=1000000007;
struct Hash_Table{
	#define Hmod 1425367
	int org[DJM],val[DJM],nxt[DJM],head[Hmod],hnt;
	Hash_Table(){hnt=1;}
	void Push(int x,int v){
		static int u; u=x%Hmod;
		org[hnt]=x; val[hnt]=v; nxt[hnt]=head[u]; head[u]=hnt++;
	}
	int Find(int x){
		static int u; u=x%Hmod;
		for(int i=head[u];i;i=nxt[i])
			if(org[i]==x) return val[i];
		return -1;
	}
}H;
int pmu[DJM+50],mu[DJM+50];
void Sieve(){
	static bool np[DJM+50];
	static int prime[DJM+50],pnt;
	mu[1]=1;
	for(int i=2;i<=DJM;i++){
		if(!np[i]) prime[++pnt]=i,mu[i]=-1;
		for(int j=1;j<=pnt&&i<=DJM/prime[j];j++){
			np[i*prime[j]]=1;
			if(i%prime[j]) mu[i*prime[j]]=-mu[i];
			else break;
		}
	}
	for(int i=1;i<=DJM;i++)
		pmu[i]=(1ll*mod+pmu[i-1]+mu[i])%mod;
}
int f(int n){
	int ret=0;
	for(int i=1,last;i<=n;i=last+1){
		last=n/(n/i);
		ret=(1ll*ret+1ll*(last-i+1)*(n/i))%mod;
	}
	return ret;
}
int DJ_pmu(int n){
	if(n<=DJM) return pmu[n];
	if(H.Find(n)!=-1) return H.Find(n);
	int ret=1;
	for(int i=2,last;i<=n;i=last+1){
		last=n/(n/i);
		ret=(1ll*ret+mod-1ll*(last-i+1)*DJ_pmu(n/i)%mod)%mod;
	}
	H.Push(n,ret);
	return ret;
}
int main(){
	Sieve(); int n,ans=0;
	scanf("%d",&n);
	for(int d=1,tmp,last;d<=n;d=last+1){
		last=n/(n/d); tmp=f(n/d);
		tmp=1ll*tmp*tmp%mod;
		ans=(1ll*ans+(1ll*DJ_pmu(last)-DJ_pmu(d-1)+mod)%mod*tmp%mod)%mod;
	}
	printf("%d\n",ans);
	return 0;
}

  

原文地址:https://www.cnblogs.com/zj75211/p/8316057.html

时间: 2024-10-11 12:35:11

●BZOJ 4176 Lucas的数论的相关文章

bzoj 4176 Lucas的数论

bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i=1}^N \sum_{j=1}^N f(ij)&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]\\&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j} \sum_{d|g

BZOJ 4176 Lucas的数论 莫比乌斯反演

题目大意:给定n(n≤109),求∑ni=1∑nj=1d(ij) 推错式子害死人... 由d|ij等价于dgcd(i,d)|j可得 ∑ni=1∑nj=1d(ij) =∑ni=1∑n2d=1?n?gcd(i,d)d? =∑nd=1∑?nd?i=1∑?n2d?j=1?nj?[gcd(i,j)=1] =∑nd=1∑?nd?i=1∑nj=1?nj?[gcd(i,j)=1] =∑nd=1∑?nd?i=1∑nj=1?nj?∑k|i,k|jμ(k) =∑nk=1μ(k)(∑?nk?d=1?nkd?)2 O(n

【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)

Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 一行一个整数ans,表示答案模1000000007的值. Sample Input 2 Sample Output 8 HINT 对于100%的数据n <= 10^9. 题解: 解锁新技能:杜教筛. 再复习一下: 若$F(n)=\s

BZOJ 1406 [AHOI2007]密码箱 数论

题意:链接 方法:数论 解析: 对于这道题,假设n=a*b;然后b是较大的因子 之后怎么来想呢? 之后就是根号找因子,找到每个a,b,之后从0~n枚举b的倍数. 因为x2?1=0(mod n) 所以(x?1)?(x+1)=0(mod n) 因为我们枚举的数就是k1*b,所以我们只要讨论一下,k1*b是等于x-1还是x+1就好了,之后就是判断下边界什么的就把所有的可能值加到一个set里!千万不要犯傻加到map里!!千万不要!!不要认为map啥都能干!! 之后因为set内元素的唯一性.直接输出内部所

【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

题目描述 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中f(ij)表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. 输入 第一行一个整数n. 输出 一行一个整数ans,表示答案模1000000007的值. 样例输入 2 样例输出 8 题解 莫比乌斯反演+杜教筛 首先有个神奇

Bzoj4176 Lucas的数论

Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2 Sample Ou

数论专项测试——约数个数和(lucas的数论)

1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 using namespace std; 7 typedef long long int64; 8 const int mod=1000000007; 9 #define maxn 2000005 10 int top,tot,d[ma

【BZOJ4176】 Lucas的数论

Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2 Sample Ou

BZOJ 1407: [Noi2002]Savage( 数论 )

枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans*N^2log(ans)), 但是实际远小于....能够AC -------------------------------------------------------------------- #include<cstdio> #include<algorithm> #inclu