HDOJ地址:http://acm.hdu.edu.cn/showproblem.php?pid=1061
快速幂算法讲解:http://blog.csdn.net/qq_26891045/article/details/51334101
Rightmost Digit
Time Limit:2000/1000
MS (Java/Others) Memory Limit:65536 /32768 K
(Java/Others)
Total Submission(s):45746
Accepted Submission(s):
17221
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6 Hint In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
================================天生骄傲的分割线=============================
题目的意思已经非常明确了,就是求n^n的个位数,求它的个位数就相当于进行mod 10运算,这里就直接用快速幂算法,就可以得出结果,题目给定的N可能会比较大,所以用long long比较保险。
#include<iostream> #include<stdio.h> using namespace std; /** 快速幂算法 */ long long Calculation(long long a,long long b,long long c){ int ans=1; a=a%c; while(b>0){ if(b%2==1) ans=(ans*a)%c; b=b/2; a=(a*a)%c; } return ans; } int main(){ int n,N; cin>>n; while(n--){ cin>>N; printf("%d\n",Calculation(N,N,10)); } return 0; }
参考博客:http://blog.csdn.net/whjkm/article/details/42803805