Pandas中的DataFrame.filter()

>>> df
one  two  three
mouse     1    2      3
rabbit    4    5      6
>>> # select columns by name
>>> df.filter(items=[‘one‘, ‘three‘])
one  three
mouse     1      3
rabbit    4      6
>>> # select columns by regular expression
>>> df.filter(regex=‘e$‘, axis=1)
one  three
mouse     1      3
rabbit    4      6
>>> # select rows containing ‘bbi‘
>>> df.filter(like=‘bbi‘, axis=0)
one  two  three
rabbit    4    5      6
时间: 2024-10-20 20:50:09

Pandas中的DataFrame.filter()的相关文章

python数据分析pandas中的DataFrame数据清洗

pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值)• isnull方法 • 查看行:df.isnull().any(axis=1)  • 查看列:df.isnull().any(axis=0)• notnull方法:• 查看行:df.notnull().all(axis=1)• 查看列:df.notnull().all(axis=0

Pandas中的DataFrame按指定顺序输出所有列的方法

问题: 输出新建的DataFrame对象时,DataFrame中各列的显示顺序和DataFrame定义中的顺序不一致. 例如: import pandas as pd grades = [48,99,75,80,42,80,72,68,36,78] df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)], 'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],

解决pandas中打印DataFrame行列显示不全的问题

在使用pandas的DataFrame打印时,如果表太长或者太宽会自动只给前后一些行列,但有时候因为一些需要,可能想看到所有的行列. 所以只需要加一下的代码就行了. #显示所有列 pd.set_option('display.max_columns', None)#显示所有行pd.set_option('display.max_rows', None)#设置value的显示长度为100,默认为50pd.set_option('max_colwidth',100) 原文地址:https://www

pandas中,dataframe 进行数据合并-pd.concat()

``# 通过数据框列向(左右)合并 a = pd.DataFrame(X_train) b = pd.DataFrame(y_train) # 合并数据框(合并前需要将数据设置成DataFrame格式), 其中,如果axis=1,ignore_index将改变的是列上的索引(属性名) print(pd.concat([a,b], axis=1, ignore_index=False)) 原文地址:https://www.cnblogs.com/komean/p/10670548.html

pandas中关于DataFrame 去除省略号

#显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_option('display.max_rows', None) #设置value的显示长度为100,默认为50 pd.set_option('max_colwidth',100) 原文地址:https://www.cnblogs.com/jiu0821/p/10007920.html

pandas中DataFrame

python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

Pandas中DateFrame修改列名

Pandas中DateFrame修改列名 在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = [

pandas 学习(2): pandas 数据结构之DataFrame

DataFrame 类型类似于数据库表结构的数据结构,其含有行索引和列索引,可以将DataFrame 想成是由相同索引的Series组成的Dict类型.在其底层是通过二维以及一维的数据块实现. 1.  DataFrame 对象的构建 1.1 用包含等长的列表或者是NumPy数组的字典创建DataFrame对象 In [68]: import pandas as pd In [69]: from pandas import Series,DataFrame # 建立包含等长列表的字典类型 In [

Python 数据处理扩展包: pandas 模块的DataFrame介绍

DataFrame是Pandas中的一个表结构的数据结构,包括三部分信息,表头(列的名称),表的内容(二维矩阵),索引(每行一个唯一的标记). 一.DataFrame的创建 有多种方式可以创建DataFrame,下面举例介绍. 例1: 通过list创建 >>> import pandas as pd >>> df = pd.DataFrame([[1,2,3],[4,5,6]]) >>> df 0 1 2 0 1 2 3 1 4 5 6 [2 rows