Light oj 1138 - Trailing Zeroes (III) 【二分查找 && N!中末尾连续0的个数】

1138 - Trailing Zeroes (III)

PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero
on the trail.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.

Output

For each case, print the case number and N. If no solution is found then print ‘impossible‘.

Sample Input

Output for Sample Input


3

1

2

5


Case 1: 5

Case 2: 10

Case 3: impossible

题意:给你一个数Q,代表N!中末尾连续0的个数。让你求出最小的N。

求N!中尾连续0的个数:

LL change(LL x){
    LL ans = 0;
    while(x){
        ans += x / 5;
        x /= 5;
    }
    return ans;
}

AC代码

#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
#define INF 0x3f3f3f3f
#define LL long long

LL change(LL x){
    LL ans = 0;
    while(x){
        ans += x / 5;
        x /= 5;
    }
    return ans;
}

int main (){
    int T, n;
    int k = 1;
    scanf("%d", &T);
    while(T--){
        scanf("%d", &n);
        LL l = 0, r = 100000000 * 5 + 10;
        LL mid, ans;
        while(r > l){
            mid = (l + r) / 2;
            if(change(mid) >= n){
                ans = mid;
                r = mid;
            }
            else
                l = mid + 1;
        }
        printf("Case %d: ", k++);
        if(change(ans) == n)
            printf("%lld\n", ans);
        else
            printf("impossible\n");

    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-20 00:45:59

Light oj 1138 - Trailing Zeroes (III) 【二分查找 && N!中末尾连续0的个数】的相关文章

Light oj 1138 - Trailing Zeroes (III) 【二分查找好题】【 给出N!末尾有连续的Q个0,让你求最小的N】

1138 - Trailing Zeroes (III) PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. F

light oj 1138 - Trailing Zeroes (III)(阶乘末尾0)

You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail. Input Input starts with an integer T (≤ 10000)

LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 &amp; 二分

题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出impossible 可以用二分求结果,重点是求一个数的阶乘中末尾含有0的个数,一定和因子5和2的个数有关,因子为2的明显比5多,所以我们只需要求一个数的阶乘的因子中一共有多少个5即可; LL Find(LL x) { LL ans = 0; while(x) { ans += x/5; x /=

Light OJ 1028 Trailing Zeroes (I) 求n因子数

今天真机调试的时候莫名其妙遇到了这样的一个问题: This product type must be built using a provisioning profile, however no provisioning profile matching both the identity "iPhone Developer" and the bundle identifier..... 具体如下图所示: 十分蛋疼, 发现不管是从网上下的demo, 还是自己的过程.凡事真机测试的时候都

C - Trailing Zeroes (III) 二分

You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail. Input Input starts with an integer T (≤ 10000)

Light OJ 1028 - Trailing Zeroes (I) (数学-因子个数)

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1028 题目大意:n除了1有多少个因子(包括他本身) 解题思路:对于n的每个因子, 可以用n的所有素因子排列组合而来, n = (a1x1) * (a2 x2) * (a3x3)...*(anxn), 其中ai为n的素因子,那么n的因子的个数等同于(x1 + 1) * (x2 + 1) * (x3 + 1) ... * (xn + 1)中排列, 因为其中一种排列肯定为所有素因子

LightOJ Trailing Zeroes (III) 1138【二分搜索+阶乘分解】

1138 - Trailing Zeroes (III) PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. F

Trailing Zeroes (III)(lightoj 二分好题)

1138 - Trailing Zeroes (III)   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N.

Trailing Zeroes (III)

You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail. Input Input starts with an integer T (≤ 10000)