R入门<三>-R语言实战第4章基本数据管理摘要

入门书籍:R语言实战

进度:1-4章

摘要:

1)实用的包

forecast:用于做时间序列预测的,有auto.arima函数

RODBC:可以用来读取excel文件。但据说R对csv格式适应更加良好,相应的导入导出均较为方便(read.table, write等)

reshape:目前用到rename函数,可以方便的对数据变量重命名

fCalendar:在日期输入处提及,据说对日期运算有奇效,但无具体示例。同理如lubridate

sqldf:在数据选取处提及,可代替subset以及各种where,即sql语句

2)数据导入

data.frame(变量1,变量2,变量3)

attach/detach:一套使用,不必重复输入数据框,直接输入变量名即可定位/同理还有with

read.table(文件路径,header=TRUE,sep=","):这里sep为分隔符

3)数据处理

is.na:判断缺失值是否存在

transform: 在按需创建新变量,并保存到数据框时,可用。举例如

mydata<-transform(mydata,
                            sumx=x1+x2,
                            meanx=(x1+x2)/2)

逻辑运算符:见P68,内有!=,不等于,!x非x等等

变量分组赋值重编码:先把所有数值赋值为NA,然后逐个判断,并赋予新值

test<-within(数据,{
                            agecat<-NA
                            agecat[age>75]<-"Elder"
                            agecat[age>=55 & age <=76]<-"Middle")
                            }

within:如上例用于赋值,与with类似但允许修改数据框,另外有提及recode,recodevar等充电吗

fix(数据):直接弹出交互式编辑器,可编辑数据

rename:用于重命名,reshape包

is.na:用于判断缺失值是否存在,缺失值为TRUE,非缺失值为FALSE(不能用==比较,因为默认缺失值不可比较)

na.rm=TRUE:用于在sum/avg等计算中,如果有缺失值时,忽略缺失值。否则函数会报错

na.omit:用于删除包含缺失值的行,一般数据量小时不建议使用

as.Date:表示将要输入的数据是日期,默认为yyyy-mm-dd,但可通过format(具体见P73)修改,举例如:

mydata《-as.Date("2014-10-12")

myformat<-"%m/%d/%y"
date<-as.Date(日期型变量,myformat直接引用之前的变量)

Sys.Date():输入当天日期;

Date():输入当前时间‘

format(x,format=输入的日期):指定输入什么日期

difftime():计算时间间隔

1 today<-Sys.Date()
2 born<-as.Date("1999-11-11")
3 difftime(today,born,units="weeks"/"days"/"hours"/"months"...)

is/as.datetype:判断,生成某个数据类型,如numeric, vector, logical等

order:数据排序,结合attach使用

merge():用by=变量名,来指定合并对象。这里NA影响很大,具体看帮助里的实例,可用incomparables去掉不要的观测值

cbind:不管其他,直接横向连接

rbind:总想合并,必须拥有相同的变量,顺序可以不一样

然后有提及一堆子集选取,但最好的是

subset/sqldf:用于数据提取。见P79-80

另外:

1:50,表示从第一个变量取到第50个变量

1-50:这里表示第一个变量不取……

时间: 2024-10-16 12:28:36

R入门<三>-R语言实战第4章基本数据管理摘要的相关文章

R语言实战 第7章

# 01 描述性统计分析 --------------------------------------------------------------#针对总体的mycavs = mtcars[,c(1,4,6)]names(mtcars)#"mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "

《数据挖掘:R语言实战》第二章 数据概览

2.1 n*m数据集 在n*m表格形式的数据集中,n代表数据的行,即观测点的数量:m代表列,即变量的数量:n*m为数据的维度. 一般来说,当拿到一份数据时,最先做的往往就是查看数据集的观测样本数.变量数,以及这些变量的实际含义,以此对数据集的庞大程度和各变量的相对重要性做到心中有数.这对选取何种数据挖掘算法,以及在这之前应该抽取多少及哪些变量及样本纳入建模都有重要的先导作用. 2.2 数据的分类 2.2.1 一般的数据分类 定量数据:连续型数据和离散型数据 定性数据:定类数据.定序数据.定距数据

R语言实战读书笔记(五)高级数据管理

5.2.1 数据函数 abs: sqrt: ceiling:求不小于x的最小整数 floor:求不大于x的最大整数 trunc:向0的方向截取x中的整数部分 round:将x舍入为指定位的小数 signif:舍入为指定的有效数字位数 cos,sin,tan acos,asin,atan:反正弦,反余弦,反正切 cosh,sinh,tanh:双曲余弦,双曲正弦和双曲正切 acosh,asinh,atanh:反双曲余弦,反双曲正弦和反双曲正切 log(x,n):以n为底 log: log10: ex

R语言实战读书笔记(四)基本数据管理

4.2 创建新变量 几个运算符: ^或**:求幂 x%%y:求余 x%/%y:整数除 4.3 变量的重编码 with(): within():可以修改数据框 4.4 变量重命名 包reshape中有个函数rename,可以改名 rename(df,c(manage='managerID',date='testDate')) 或 names(df)[2]<-'newname' 4.5 缺失值 is.na():检查缺失值,是返回TRUE,否返回FALSE na.rm=TRUE选项可以用,比如 y<

《数据挖掘R语言实战》图书介绍,数据挖掘相关人员看过来!

今天介绍一本书<数据挖掘R语言实战>.数据挖掘技术是当下大数据时代最关键的技术,其应用领域及前景不可估量.R是一款极其优秀的统计分析和数据挖掘软件,R语言的特点是入门容易,使用简单. 这本书侧重使用R进行数据挖掘,重点进述了R的数据挖掘流程.算法包的使用及相关工具的应用,同时结合大量精选的数据挖掘实例对R软件进行深入潜出和全面的介绍,以便读者能深刻理解R的精髓并能快速.高效和灵活地掌握使用R进行数据挖掘的技巧. 本书以数据预处理.基本算法及应用和高级算法及应用这三篇展示. (1)上篇:数据预处

R语言实战(五)方差分析与功效分析

本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析

《R语言实战》学习笔记seventh

由于在准备软考中级数据库系统工程师外加巩固SQL Server 2012,所以拖了好久一直没继续学R 下去 所以今天重开R 的战事 这次是关于基本统计分析的内容,即关于用于生成基本的描述性统计量和推断统计量的R 函数 首先,将着眼于定量变量的位置和尺度的衡量方式 然后将是生成类别型变量的频数表和列联表的方法(以及连带的卡方检验) 接下来将考察连续型和有序型变量相关系数的多种形式 最后转而通过参数检验(t检验)和非参数检验(Mann-Whitney U检验.Kruskal-Wallis检验)方法研

《R语言实战》(中文完整版)pdf

下载地址:网盘下载 基本介绍 编辑 原作名: R in Action[2] 作者: Robert I. Kabacoff 译者: 高涛 / 肖楠 / 陈钢 出版社: 人民邮电出版社 出版年: 2013-1 页数: 388 定价: 79.00元 装帧: 平装 ISBN: 978-711-529-990-1 内容简介 编辑 数据时代已经到来,但数据分析.数据挖掘人才却十分短缺.由于"大数据"对每个领域的决定性影响,相对于经验和直觉,在商业.经济及其他领域中基于数据和分析去发现问题并作出科学

《R语言实战》学习笔记fourth

又拖了好久继续写R 语言的学习笔记了啊 这次到了基本数据管理了,众所周知数据准备是数据分析的最重要的前提 书本是从一个例子开始本章的内容的,例子是一个类似调查问卷的 然后把回答标为从1到5,再进行分析(这让我想到了自学SPSS 的时候啊) > manager <- c(1, 2, 3, 4, 5) > date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08&q