Fliptile 开关问题 poj 3279

Fliptile

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 4031   Accepted: 1539

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

Input

Line 1: Two space-separated integers: M and N
Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

Source

USACO 2007 Open Silver

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cmath>
  5 #include <algorithm>
  6 #include <string>
  7 #include <vector>
  8 #include <set>
  9 #include <map>
 10 #include <queue>
 11 #include <stack>
 12 #include <sstream>
 13 #include <iomanip>
 14 using namespace std;
 15 const int INF=0x4fffffff;
 16 const int EXP=1e-6;
 17 const int MS=16;
 18
 19 int ans[MS][MS];
 20 int pic[MS][MS];
 21 int flag[MS][MS];
 22 int M,N;
 23 int dir[5][2]={{0,0},{0,1},{1,0},{0,-1},{-1,0}};
 24
 25 int color(int x,int y)
 26 {
 27       int sum=pic[x][y];
 28       for(int i=0;i<5;i++)
 29       {
 30             int r=x+dir[i][0];
 31             int c=y+dir[i][1];
 32             if(r>=0&&r<M&&c>=0&&c<N)
 33                   sum+=flag[r][c];
 34       }
 35       return sum&1;
 36 }
 37
 38 int calc()
 39 {
 40       int res=0;
 41       for(int i=1;i<M;i++)
 42       {
 43             for(int j=0;j<N;j++)
 44             {
 45                   if(color(i-1,j))
 46                   {
 47                         flag[i][j]=1;
 48                   }
 49             }
 50       }
 51       for(int i=0;i<N;i++)
 52             if(color(M-1,i))
 53                   return -1;
 54       for(int i=0;i<M;i++)
 55             for(int j=0;j<N;j++)
 56                   res+=flag[i][j];
 57       return res;
 58 }
 59
 60 void solve()
 61 {
 62       int res=-1;
 63       for(int i=0;i<1<<N;i++)
 64       {
 65             memset(flag,0,sizeof(flag));
 66             for(int j=0;j<N;j++)
 67                   flag[0][N-1-j]=(i>>j)&1;
 68             int cnt=calc();
 69             if(cnt>=0&&(res<0||res>cnt))
 70             {
 71                   res=cnt;
 72                   memcpy(ans,flag,sizeof(flag));
 73             }
 74       }
 75       if(res<0)
 76             printf("IMPOSSIBLE\n");
 77       else
 78       {
 79             for(int i=0;i<M;i++)
 80             {
 81                   for(int j=0;j<N;j++)
 82                   {
 83                         if(j)
 84                               printf(" ");
 85                         printf("%d",ans[i][j]);
 86                   }
 87                   printf("\n");
 88             }
 89       }
 90 }
 91
 92 int main()
 93 {
 94       scanf("%d%d",&M,&N);
 95       for(int i=0;i<M;i++)
 96             for(int j=0;j<N;j++)
 97                   scanf("%d",&pic[i][j]);
 98       solve();
 99       return 0;
100 }
时间: 2024-10-22 08:06:50

Fliptile 开关问题 poj 3279的相关文章

状态压缩+枚举 POJ 3279 Fliptile

题目传送门 1 /* 2 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 3 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 4 */ 5 #include <cstdio> 6 #include <cstring> 7 #include <algorithm> 8 using namespace std; 9 10 const int MAXN = 20; 11 const int INF = 0x3f3f3f3

POJ 3279(Fliptile)题解

以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑色所需翻转的是哪些棋子(这句话好长...). [题目分析] 盯着奇怪的题目看了半天发现和奶牛没什么卵关系..奶牛智商高了产奶高是什么鬼说法... 这题刚开始被放到搜索的分类下了..然而这和搜索有什么关系..没经验所以想了各种和搜索沾边的方法,结果没想出解法,直到看了网上的题解,压根不是搜索啊有木有.

【POJ 3279 Fliptile】开关问题,模拟

题目链接:http://poj.org/problem?id=3279 题意:给定一个n*m的坐标方格,每个位置为黑色或白色.现有如下翻转规则:每翻转一个位置的颜色,与其四连通的位置都会被翻转,但注意只扩散一圈,不是连锁反应. 求最少翻转几个位置能够使所有n*m个位置都变为白色.若有解,求字典序最小的翻转方案(给出每个位置的翻转次数). 数据范围:n, m 属于 [1, 15] 思路:我们把翻转方案中的翻转称为“主动翻转”,翻转过程中受邻居影响而发生的翻转称为“被动翻转”.观察例子可得出如下几个

POJ 3279 Fliptile (二进制枚举+模拟)

Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3992   Accepted: 1518 Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which

poj 3279 Fliptile (简单搜索)

Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16558   Accepted: 6056 Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in whic

Enum:Fliptile(POJ 3279)

Fliptile 题目大意:农夫想要测牛的智商,于是他把牛带到一个黑白格子的地,专门来踩格子看他们能不能把格子踩称全白 这一题其实就是一个枚举题,只是我们只用枚举第一行就可以了,因为这一题有点像开关一样,一个翻了,另一个就要跟着一起翻,第一行会影响下面所有行,而且影响情况只有一种,所以枚举完了以后我们不断模拟就可以了 1 #include <iostream> 2 #include <functional> 3 #include <algorithm> 4 5 usin

POJ 3279 Fliptile(DFS+反转)

题目链接:http://poj.org/problem?id=3279 题目大意:有一个n*m的格子,每个格子都有黑白两面(0表示白色,1表示黑色).我们需要把所有的格子都反转成黑色,每反转一个格子,它上下左右的格子都会跟着反转.请求出用最小步数完成反转时每个格子反转的次数.有多个解时,输出字典序最小的一组. 解题思路:只要枚举第一行的2^m种情况,如果一个位置上一行是1,那这个位置一定要反转,因为只有这一行能改变上一行,所以每一行的状态都是由前一行决定的.只要最后判断最后一行是不是都是0即可,

poj 3279 Fliptile(二进制)

http://poj.org/problem?id=3279 在n*N的矩阵上,0代表白色,1代表黑色,每次选取一个点可以其颜色换过来,即白色变成黑色,黑色变成白色,而且其上下左右的点颜色也要交换,求最少交换多少点能把全部换成颜色0 输出所需要换的点,用1表示,如果有多种方案,输出字典序足最小的方案 但是这题的数据里没有字典序的情况,所以没有比较字典序也可以过,我一开始就不知道这个怎么按字典序排 用二进制枚举第一行所有的情况,第一行的情况确定了,下面的就确定了 1 #include<cstdio

POJ 3279 Fliptile 状态压缩,思路 难度:2

http://poj.org/problem?id=3279 明显,每一位上只需要是0或者1, 遍历第一行的所有取值可能,(1<<15,时间足够)对每种取值可能: 对于第0-n-2行,因为上一行和本身行都已确定,所以可以确定下一行 最后检查第n-1行是否满足条件即可 #include <cstdio> #include <cstring> #include <algorithm> #include <queue> using namespace