《Java并发编程实战》第六章 任务运行 读书笔记

一、 在线程中运行任务

无限制创建线程的不足

.线程生命周期的开销很高

.资源消耗

.稳定性

二、Executor框架

Executor基于生产者-消费者模式,提交任务的操作相当于生产者。运行任务的线程则相当于消费者。

1. Executors 返回 ExecutorService

2. ExecutorService方法submit、execute

3. ExecutorService.submit 返回 Future

线程池,Executors方法介绍

方法名 解释
newFixedThreadPool 将创建一个固定长度的线程池,每当提交一个任务时就创建一个线程,知道达到线程池的最大数量。这时线程池的规模将不再变化(假设某个线程因为发生了未预期的Exception而结束,那么线程池会补充一个新的线程。)
newCachedThreadPool 将创建一个可缓存的线程池,假设线程池的当前规模超过了处理需求时。那么将回收空暇的线程。而当需求添加时,则能够加入新的线程,线程池的规模不存在不论什么限制。

newSingleThreadExecutor 将会创建一个单线程的Executor。它创建单个工作者线程来运行任务,假设这个线程异常结束,会创建还有一个线程来替代。newSingleThreadExecutor能确保按照任务在队列中的顺序来串行运行(比如FIFO、LIFO、优先级)
newScheduledThreadPool 创建了一个固定长度的线程池,并且以延迟或定时的方式来运行任务,类似于Timer。

Executor的生命周期

以上四个方法都会返回ExecutorService,ExecutorService的生命周期有3种状态:执行、关闭和已终止。

方法名 解释
shutdown 将运行平缓的关闭过程:不再接受新的任务。同一时候等待已经提交的任务运行完毕—包含那些还未開始运行的任务。
shutdownNow 将运行粗暴的关闭过程:它将尝试取消全部运行中的任务,而且不再启动队列中尚未開始运行的任务。

Timer类负责管理延迟任务

三、找出可利用的并行性

1. 任务拆分到多个子线程处理。

2. 携带结果的任务Callable与Futrue

Executor运行任务的4个生命周期:创建。提交。開始。完毕。

任务的提交者和运行者之间的通讯手段

ExecutorService executor = Executors.newSingleThreadExecutor();
Callable<Object> task = new Callable<Object>() {
     public Object call() throws Exception {
          Object result = "...";
          return result;
     }
};
Future<Object> future = executor.submit(task);
future.get();  // 等待至完毕

Future<Object> future = executor.submit(task);
// 等待到任务被运行完毕返回结果
// 假设任务运行出错,这里会抛ExecutionException
future.get();
//等待3秒,超时后会抛TimeoutException
future.get(3,  TimeUnit.SECONDS);

Callable<Object> task = new Callable<Object>() {
     public Object call() throws Exception {
          Object result = …;
          return result;
     }
};

有两种任务:

Runnable

Callable - 须要返回值的任务

Task Submitter把任务提交给Executor运行,他们之间须要一种通讯手段,这样的手段的详细实现。通常叫做Future。

Future通常包含get(堵塞至任务完毕)。 cancel。get(timeout)(等待一段时间)

等等。Future也用于异步变同步的场景。

3、4. 在异构任务并行化中存在的局限

假设一个任务是读取IO资源。能够使用多个线程去同一时候读取。可是效率上限可能出在IO上。即使开启再多线程读取总速度也不可能超出IO读取速度上限。

开启多个线程本身也会调高编程难度,同一时候开启多个线程也会造成资源消耗。

多线程提高效率非常多时候并非添加一个线程效率提高一倍,可能提高的效率微乎其微。

5. Executor与BlockingQueue

假设想提交一组计算任务,而且希望在计算完毕后获得结果,能够使用BlockingQueue保存每一个任务的Future。

7. 为任务设置时限

//等待3秒,超时后会抛TimeoutException

future.get(3,  TimeUnit.SECONDS);

8. ExecutorService.invokeAll()

运行给定的任务,当全部任务完毕时。返回保持任务状态和结果的 Future 列表。返回列表的全部元素的 Future.isDone() 为 true。

注意,能够正常地或通过抛出异常来终止已完毕 任务。假设正在进行此操作时改动了给定的 collection,则此方法的结果是不确定的。

四、资料:

《温绍锦 - Java并发程序设计教程》

     摘录“任务的提交者和运行者”。“任务的提交者和运行者之间的通讯手段”

聊聊并发(三)——JAVA线程池的分析和使用(原理)

http://www.infoq.com/cn/articles/java-threadPool

Java(Android)线程池(使用)

http://www.trinea.cn/android/java-android-thread-pool/

Java Thread Pool Example using Executors and ThreadPoolExecutor

http://www.journaldev.com/1069/java-thread-pool-example-using-executors-and-threadpoolexecutor

工具能够查看线程数

jconsole.exe

时间: 2024-10-29 19:07:36

《Java并发编程实战》第六章 任务运行 读书笔记的相关文章

《Java并发编程实战》第二章 线程安全性 读书笔记

一.什么是线程安全性 编写线程安全的代码 核心在于要对状态访问操作进行管理. 共享,可变的状态的访问 - 前者表示多个线程访问, 后者声明周期内发生改变. 线程安全性 核心概念是正确性.某个类的行为与其规范完全一致. 多个线程同时操作共享的变量,造成线程安全性问题. * 编写线程安全性代码的三种方法: 不在线程之间共享该状态变量 将状态变量修改为不可变的变量 在访问状态变量时使用同步 Java同步机制工具: synchronized volatile类型变量 显示锁(Explicit Lock

Java并发编程实战 第16章 Java内存模型

什么是内存模型 JMM(Java内存模型)规定了JVM必须遵循一组最小保证,这组保证规定了对变量的写入操作在何时将对其他线程可见. JMM为程序中所有的操作定义了一个偏序关系,称为Happens-Before.两个操作缺乏Happens-Before关系,则Jvm会对它们进行任意的重排序. Happends-Before的规则包括: 1. 程序顺序规则.若程序中操作A在操作B之前,则线程中操作A在操作B之前执行. 2. 监视器锁规则.在同一监视器锁上的解锁操作必须在加锁操作之前执行.如图所示,

JAVA并发编程实战---第三章:对象的共享(2)

线程封闭 如果仅仅在单线程内访问数据,就不需要同步,这种技术被称为线程封闭,它是实现线程安全性的最简单的方式之一.当某个对象封闭在一个线程中时,这种方法将自动实现线程安全性,即使被封闭的对象本生不是线程安全的. 实现好的并发是一件困难的事情,所以很多时候我们都想躲避并发.避免并发最简单的方法就是线程封闭.什么是线程封闭呢? 就是把对象封装到一个线程里,只有这一个线程能看到此对象.那么这个对象就算不是线程安全的也不会出现任何安全问题.实现线程封闭有哪些方法呢? 1:ad-hoc线程封闭 这是完全靠

Java并发编程实战 第15章 原子变量和非阻塞同步机制

非阻塞的同步机制 简单的说,那就是又要实现同步,又不使用锁. 与基于锁的方案相比,非阻塞算法的实现要麻烦的多,但是它的可伸缩性和活跃性上拥有巨大的优势. 实现非阻塞算法的常见方法就是使用volatile语义和原子变量. 硬件对并发的支持 原子变量的产生主要是处理器的支持,最重要的是大多数处理器架构都支持的CAS(比较并交换)指令. 模拟实现AtomicInteger的++操作 首先我们模拟处理器的CAS语法,之所以说模拟,是因为CAS在处理器中是原子操作直接支持的.不需要加锁. public s

JAVA并发编程实战---第三章:对象的共享

在没有同步的情况下,编译器.处理器以及运行时等都可能对操作的执行顺序进行一些意想不到的调整.在缺乏足够同步的多线程程序中,要对内存操作的执行顺序进行判断几乎无法得到正确的结果. 非原子的64位操作 当线程在没有同步的情况下读取变量时,可能会读到一个失效值,但至少这个值是由之前的某个线程设置,而不是一个随机值.这种安全性保证也被称为最低安全性. Java内存模型要求:变量的读取操作和写入操作都必须是原子操作,但对于非Volatile类型的long和Double变量,JVM允许将64的读操作或写操作

《Java并发编程实战》第九章 图形用户界面应用程序界面 读书笔记

一.为什么GUI是单线程化 传统的GUI应用程序通常都是单线程的. 1. 在代码的各个位置都须要调用poll方法来获得输入事件(这样的方式将给代码带来极大的混乱) 2. 通过一个"主事件循环(Main Event Loop)"来间接地运行应用程序的全部代码. 假设在主事件循环中调用的代码须要非常长时间才干运行完毕,那么用户界面就会"冻结",直到代码运行完毕.这是由于仅仅有当运行控制权返回到主事件循环后,才干处理兴许的用户界面事件. 非常多尝试多线程的GUI框架的努力

java并发编程实战-第2章-线程安全性

2. 线程安全性 2.1 什么是线程安全性 线程安全类:当一个类被多个线程访问时,不管运行环境中如何调度,这些线程如何交替执行,并且在调用的代码部分不需要额为的同步或者协同.这个类为线程安全类 Thread-safe classes encapsulate any needed synchronization so that clients need not provide their own. 2.1.1. Example: A Stateless Servlet Stateless obje

《Java并发编程实战》第十六章 Java内存模型 读书笔记

Java内存模型是保障多线程安全的根基,这里仅仅是认识型的理解总结并未深入研究. 一.什么是内存模型,为什么需要它 Java内存模型(Java Memory Model)并发相关的安全发布,同步策略的规范.一致性等都来自于JMM. 1 平台的内存模型 在架构定义的内存模型中将告诉应用程序可以从内存系统中获得怎样的保证,此外还定义了一些特殊的指令(称为内存栅栏或栅栏),当需要共享数据时,这些指令就能实现额外的存储协调保证. JVM通过在适当的位置上插入内存栅栏来屏蔽在JVM与底层平台内存模型之间的

《Java并发编程实战》第十一章 性能与可伸缩性 读书笔记

造成开销的操作包括: 1. 线程之间的协调(例如:锁.触发信号以及内存同步等) 2. 增加的上下文切换 3. 线程的创建和销毁 4. 线程的调度 一.对性能的思考 1 性能与可伸缩性 运行速度涉及以下两个指标: 某个指定的任务单元需要"多快"才能处理完成.计算资源一定的情况下,能完成"多少"工作. 可伸缩性: 当增加计算资源时(例如:CPU.内存.存储容器或I/O带宽),程序的吞吐量或者处理能力能相应地增加. 2 评估各种性能权衡因素 避免不成熟的优化.首先使程序正