QuantLib 金融计算——自己动手封装 Python 接口(1)

目录

  • QuantLib 金融计算——自己动手封装 Python 接口(1)

    • 概述
    • QuantLib 如何封装 Python 接口?
    • 自己封装 Python 接口
      • 封装 ArrayMatrix
      • QuantLibEx 和官方包混合使用
    • 附录:接口文件、setup.py__init__.py

QuantLib 金融计算——自己动手封装 Python 接口(1)

概述

QuantLib 已经开始在 PyPi 上发布封装好的 Python 接口,安装和使用非常方便,与普通的包别无二致。并且更新及时,保持对应最新版本的 QuantLib。

官方发布的 Python 接口,其优点是广度全面,缺点是深度不足。有时候用户需要的功能恰好没有被封装(《收益率曲线之构建曲线(3)》一文中曾经提到过),希望重新封装接口,添加自己需要的功能;亦或是用户已经在 C++ 源代码层面上扩展或修复了 QuantLib,希望包装扩展的新功能,并与官方的 Python 接口联合使用。

无论是上述哪种情况,都需要用户自己动手封装 Python 接口。

QuantLib 如何封装 Python 接口?

QuantLib 使用 swig 来封装 Python 接口(其他语言的接口也是用 swig 封装的),所以,要动手封装自己的 Python 接口需要了解一点 swig 的用法(看这里,或这里)。

swig 封装 C++ 的流程大体如下:

  1. 编写若干“接口文件”(文件扩展名是 .i ),告知 swig 如何封装 C++ 源代码;
  2. 在接口文件上运行 swig 命令,这会产生一个 .py 文件(描述封装好的 Python 接口,包含了若干函数或类的定义),以及一个 .cpp 文件(接口背后的计算引擎将由该文件生成);
  3. 编写并运行 setup.py,这将编译 .cpp 文件,并将编译得到的 .so 文件(动态库)与 .py 文件绑定起来,贯通表面的 Python 接口和背后的 C++ 计算引擎;
  4. 最终得到一个 Python 包(将包含在系统目录)。

不同版本 QuantLib 的 swig 接口文件可以在这里获得。所有接口文件可以分为三部分:

  1. quantlib.i 是最顶端的接口文件,swig 将依据此文件生成接口代码(.py.cpp);
  2. ql.i 是中间层文件,用来汇集其他接口文件;
  3. bonds.idate.i 等等是封装具体接口的文件。

自己封装 Python 接口

了解一点 swig 的原理之后会发现,swig 在封装好的 Python 接口背后隐藏了一个个真实的 C++ 对象,实际的计算任务、类型检查和异常处理等等其实是委托给这些 C++ 对象。

因此可以猜测,将同一段 C++ 代码封装成两个不同的 Python 接口,这两个接口应该可以混用,因为这仅仅是“同一个人穿了不同的衣服”。

下面用实验验证这种想法。

封装 ArrayMatrix

以 QuantLib 中的两个类 ArrayMatrix 为例,将它们独立出来,封装成名为 QuantLibEx 的包。具体的接口文件没有必要自己写,直接沿用官方发布的版本(1.15 版本)。

在官方发布的 swig 接口文件中,ArrayMatrix 对应的文件是 linearalgebra.i,该文件同时包含(%include)了 common.itypes.i 两个文件。

将上述三个文件连同 quantlib.i(重命名为 quantlibex.i)和 ql.i 独立出来,删除掉一些和封装 Python 接口无关的代码,作为构建 QuantLibEx 的接口文件。

在包含这五个接口文件的目录下创建一个 QuantLibEx 目录,然后运行 swig 命令,生成必需的 .py.cpp 文件:

swig -c++ -python -outdir QuantLibEx -o QuantLibEx/qlx_wrap.cpp quantlibex.i

QuantLibEx 目录下将出现两个文件:QuantLibEx.pyqlx_wrap.cpp。为了使 QuantLibEx 成为一个 Python 包,需要添加一个 __init__.py 文件(内容见附录)。

QuantLibEx.pyqlx_wrap.cpp 准备就绪之后就可以运行事先编写好的 setup.py 文件(内容见附录),编译 .cpp 文件,并打包进 Python 的系统目录。

首先,构建(build 命令)QuantLibEx 包:

python3 setup.py build
running build
running build_py
creating build
creating build/lib.linux-x86_64-3.6
creating build/lib.linux-x86_64-3.6/QuantLibEx
copying QuantLibEx/__init__.py -> build/lib.linux-x86_64-3.6/QuantLibEx
copying QuantLibEx/QuantLibEx.py -> build/lib.linux-x86_64-3.6/QuantLibEx
running build_ext
building 'QuantLibEx._QuantLibEx' extension
creating build/temp.linux-x86_64-3.6
creating build/temp.linux-x86_64-3.6/QuantLibEx
x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/ql -I/usr/include/python3.6m -c QuantLibEx/qlx_wrap.cpp -o build/temp.linux-x86_64-3.6/QuantLibEx/qlx_wrap.o
x86_64-linux-gnu-g++ -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 build/temp.linux-x86_64-3.6/QuantLibEx/qlx_wrap.o -L/usr/lib/ -lQuantLib -o build/lib.linux-x86_64-3.6/QuantLibEx/_QuantLibEx.cpython-36m-x86_64-linux-gnu.so

构建成功之后会出现一个 build 目录,里面包含了若干文件,包括已经构建好的 QuantLibEx 包。然后,进入安装(install 命令)环节,打包进 Python 的系统目录(需要 sudo 权限)。

sudo python3 setup.py install
running install
running build
running build_py
running build_ext
running install_lib
copying build/lib.linux-x86_64-3.6/QuantLibEx/QuantLibEx.py -> /usr/local/lib/python3.6/dist-packages/QuantLibEx
copying build/lib.linux-x86_64-3.6/QuantLibEx/_QuantLibEx.cpython-36m-x86_64-linux-gnu.so -> /usr/local/lib/python3.6/dist-packages/QuantLibEx
byte-compiling /usr/local/lib/python3.6/dist-packages/QuantLibEx/QuantLibEx.py to QuantLibEx.cpython-36.pyc
running install_egg_info
Writing /usr/local/lib/python3.6/dist-packages/QuantLibEx-0.1.egg-info

运行 pip3 list 就可以看到 QuantLibEx 了。

...
QuantLib                1.17
QuantLibEx              0.1
...

QuantLibEx 和官方包混合使用

下面简单验证一下 QuantLibEx(基于 QuantLib-1.15)和官方包(基于 QuantLib-1.17)是否可以混合使用:

import QuantLib as ql
import QuantLibEx as qlx

array = ql.Array(5,0.2)
print(type(array))
print(array)

arrayX = qlx.Array(5,0.3)
print(type(arrayX))
print(arrayX)

print(array + arrayX)
<class 'QuantLib.QuantLib.Array'>
[ 0.2; 0.2; 0.2; 0.2; 0.2 ]
<class 'QuantLibEx.QuantLibEx.Array'>
[ 0.3; 0.3; 0.3; 0.3; 0.3 ]
[ 0.5; 0.5; 0.5; 0.5; 0.5 ]

更复杂一点的例子——二维插值:

xVec = [float(i) for i in range(10)]
yVec = [float(i) for i in range(10)]

m = ql.Matrix(len(xVec), len(yVec))
mX = qlx.Matrix(len(xVec), len(yVec))

for rowIt in range(len(xVec)):
    for colIt in range(len(yVec)):
        m[rowIt][colIt] = scipy.sin(xVec[rowIt]) + scipy.sin(yVec[colIt])
        mX[rowIt][colIt] = scipy.sin(xVec[rowIt]) + scipy.sin(yVec[colIt])

print(type(m))
print(m)

print(type(mX))
print(mX)

bicubIntp = ql.BicubicSpline(
    xVec, yVec, m)

bicubIntpX = ql.BicubicSpline(
    xVec, yVec, mX)

x = 0.5
y = 4.5

print("Analytical Value:  ", scipy.sin(x) + scipy.sin(y))
print("Bicubic Value(base on ql):  ", bicubIntp(x, y))
print("Bicubic Value(base on qlx):  ", bicubIntpX(x, y))
<class 'QuantLib.QuantLib.Matrix'>
| 0 0.841471 0.909297 0.14112 -0.756802 -0.958924 -0.279415 0.656987 0.989358 0.412118 |
| 0.841471 1.68294 1.75077 0.982591 0.0846685 -0.117453 0.562055 1.49846 1.83083 1.25359 |
| 0.909297 1.75077 1.81859 1.05042 0.152495 -0.0496268 0.629882 1.56628 1.89866 1.32142 |
| 0.14112 0.982591 1.05042 0.28224 -0.615682 -0.817804 -0.138295 0.798107 1.13048 0.553238 |
| -0.756802 0.0846685 0.152495 -0.615682 -1.5136 -1.71573 -1.03622 -0.0998159 0.232556 -0.344684 |
| -0.958924 -0.117453 -0.0496268 -0.817804 -1.71573 -1.91785 -1.23834 -0.301938 0.030434 -0.546806 |
| -0.279415 0.562055 0.629882 -0.138295 -1.03622 -1.23834 -0.558831 0.377571 0.709943 0.132703 |
| 0.656987 1.49846 1.56628 0.798107 -0.0998159 -0.301938 0.377571 1.31397 1.64634 1.06911 |
| 0.989358 1.83083 1.89866 1.13048 0.232556 0.030434 0.709943 1.64634 1.97872 1.40148 |
| 0.412118 1.25359 1.32142 0.553238 -0.344684 -0.546806 0.132703 1.06911 1.40148 0.824237 |

<class 'QuantLibEx.QuantLibEx.Matrix'>
| 0 0.841471 0.909297 0.14112 -0.756802 -0.958924 -0.279415 0.656987 0.989358 0.412118 |
| 0.841471 1.68294 1.75077 0.982591 0.0846685 -0.117453 0.562055 1.49846 1.83083 1.25359 |
| 0.909297 1.75077 1.81859 1.05042 0.152495 -0.0496268 0.629882 1.56628 1.89866 1.32142 |
| 0.14112 0.982591 1.05042 0.28224 -0.615682 -0.817804 -0.138295 0.798107 1.13048 0.553238 |
| -0.756802 0.0846685 0.152495 -0.615682 -1.5136 -1.71573 -1.03622 -0.0998159 0.232556 -0.344684 |
| -0.958924 -0.117453 -0.0496268 -0.817804 -1.71573 -1.91785 -1.23834 -0.301938 0.030434 -0.546806 |
| -0.279415 0.562055 0.629882 -0.138295 -1.03622 -1.23834 -0.558831 0.377571 0.709943 0.132703 |
| 0.656987 1.49846 1.56628 0.798107 -0.0998159 -0.301938 0.377571 1.31397 1.64634 1.06911 |
| 0.989358 1.83083 1.89866 1.13048 0.232556 0.030434 0.709943 1.64634 1.97872 1.40148 |
| 0.412118 1.25359 1.32142 0.553238 -0.344684 -0.546806 0.132703 1.06911 1.40148 0.824237 |

Analytical Value:   -0.498104579060894
Bicubic Value(base on ql):   -0.49656170664824184
Bicubic Value(base on qlx):   -0.49656170664824184

到目前为止,一切都能按照预期运行,自定义的封装确实能够和官方发布的包混合使用。不过,类型判定有些诡异

b = array + arrayX
c = arrayX + array

print(type(b))
print(type(c))
<class 'QuantLibEx.QuantLibEx.Array'>
<class 'QuantLibEx.QuantLibEx.Array'>

为什么 bc 都被判定为 QuantLibEx 中的 Array

附录:接口文件、setup.py__init__.py

  • quantlibex.i
%module QuantLibEx

%include exception.i

%exception {
    try {
        $action
    } catch (std::out_of_range& e) {
        SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
    } catch (std::exception& e) {
        SWIG_exception(SWIG_RuntimeError,const_cast<char*>(e.what()));
    } catch (...) {
        SWIG_exception(SWIG_UnknownError,"unknown error");
    }
}

//#if defined(SWIGPYTHON)
%{
#include <ql/version.hpp>
const int    __hexversion__ = QL_HEX_VERSION;
const char* __version__    = QL_VERSION;
%}

const int __hexversion__;
%immutable;
const char* __version__;
%mutable;
//#endif

%include ql.i
  • ql.i
//#if defined(SWIGPYTHON)
%{
#ifdef barrier
#undef barrier
#endif
%}
//#endif

%{
#include <ql/quantlib.hpp>

#if QL_HEX_VERSION < 0x011400f0
    #error using an old version of QuantLib, please update
#endif

#ifdef BOOST_MSVC
#ifdef QL_ENABLE_THREAD_SAFE_OBSERVER_PATTERN
#define BOOST_LIB_NAME boost_thread
#include <boost/config/auto_link.hpp>
#undef BOOST_LIB_NAME
#define BOOST_LIB_NAME boost_system
#include <boost/config/auto_link.hpp>
#undef BOOST_LIB_NAME
#endif
#endif

// add here SWIG version check

%}

//#ifdef SWIGPYTHON
%{
#if PY_VERSION_HEX < 0x02010000
    #error Python version 2.1.0 or later is required
#endif
%}
//#endif

// common name mappings

%include common.i
%include linearalgebra.i
%include types.i
  • types.i
#ifndef quantlib_types_i
#define quantlib_types_i

%include common.i
%include std_common.i

%{
using QuantLib::Integer;
using QuantLib::BigInteger;
using QuantLib::Natural;
using QuantLib::BigNatural;
using QuantLib::Real;
using QuantLib::Decimal;
using QuantLib::Time;
using QuantLib::Rate;
using QuantLib::Spread;
using QuantLib::DiscountFactor;
using QuantLib::Volatility;
using QuantLib::Probability;
using QuantLib::Size;
%}

typedef int Integer;
typedef long BigInteger;
typedef unsigned int Natural;
typedef unsigned long BigNatural;
typedef double Real;

typedef Real Decimal;
typedef Real Time;
typedef Real Rate;
typedef Real Spread;
typedef Real DiscountFactor;
typedef Real Volatility;
typedef Real Probability;

//#if defined(SWIGPYTHON)
// needed for those using SWIG 1.3.21 in order to compile with VC++6
%typecheck(SWIG_TYPECHECK_INTEGER) std::size_t {
    $1 = (PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}
//#endif

typedef std::size_t Size;

#endif
  • common.i
#ifndef quantlib_common_i
#define quantlib_common_i

%include stl.i
%include exception.i

%define QL_TYPECHECK_BOOL       7210    %enddef

%{
// This is necessary to avoid compile failures on
// GCC 4
// see http://svn.boost.org/trac/boost/ticket/1793

#if defined(NDEBUG)
#define BOOST_DISABLE_ASSERTS 1
#endif

#include <boost/algorithm/string/case_conv.hpp>
%}

//#if defined(SWIGPYTHON)
%typemap(in) boost::optional<bool> %{
    if($input == Py_None)
        $1 = boost::none;
    else if ($input == Py_True)
        $1 = true;
    else
        $1 = false;
%}
%typecheck (QL_TYPECHECK_BOOL) boost::optional<bool> {
if (PyBool_Check($input) || Py_None == $input)
    $1 = 1;
else
    $1 = 0;
}
//#endif

%{
// generally useful classes
using QuantLib::Error;
using QuantLib::Handle;
using QuantLib::RelinkableHandle;
%}

namespace boost {

    template <class T>
    class shared_ptr {
      public:
        T* operator->();
        //#if defined(SWIGPYTHON)
        %extend {
            bool __nonzero__() {
                return !!(*self);
            }
            bool __bool__() {
                return !!(*self);
            }
        }
        //#endif
    };

}

template <class T>
class Handle {
  public:
    Handle(const boost::shared_ptr<T>& = boost::shared_ptr<T>());
    boost::shared_ptr<T> operator->();
    //#if defined(SWIGPYTHON)
    %extend {
        bool __nonzero__() {
            return !self->empty();
        }
        bool __bool__() {
            return !self->empty();
        }
    }
    //#endif
};

template <class T>
class RelinkableHandle : public Handle<T> {
  public:
    RelinkableHandle(const boost::shared_ptr<T>& = boost::shared_ptr<T>());
    void linkTo(const boost::shared_ptr<T>&);
};

%define swigr_list_converter(ContainerRType,
                            ContainerCType, ElemCType)
%enddef

%define deprecate_feature(OldName, NewName)
//#if defined(SWIGPYTHON)
%pythoncode %{
def OldName(*args, **kwargs):
    from warnings import warn
    warn('%s is deprecated; use %s' % (OldName.__name__, NewName.__name__))
    return NewName(*args, **kwargs)
%}
//#endif
%enddef

#endif
  • linearalgebra.i
#ifndef quantlib_linear_algebra_i
#define quantlib_linear_algebra_i

%include common.i
%include types.i
%include stl.i

%{
using QuantLib::Array;
using QuantLib::Matrix;
%}

%define QL_TYPECHECK_ARRAY       4210    %enddef
%define QL_TYPECHECK_MATRIX      4220    %enddef

//#if defined(SWIGPYTHON)
%{
bool extractArray(PyObject* source, Array* target) {
    if (PyTuple_Check(source) || PyList_Check(source)) {
        Size size = (PyTuple_Check(source) ?
                     PyTuple_Size(source) :
                     PyList_Size(source));
        *target = Array(size);
        for (Size i=0; i<size; i++) {
            PyObject* o = PySequence_GetItem(source,i);
            if (PyFloat_Check(o)) {
                (*target)[i] = PyFloat_AsDouble(o);
                Py_DECREF(o);
            } else if (PyInt_Check(o)) {
                (*target)[i] = Real(PyInt_AsLong(o));
                Py_DECREF(o);
            } else {
                Py_DECREF(o);
                return false;
            }
        }
        return true;
    } else {
        return false;
    }
}
%}

%typemap(in) Array (Array* v) {
    if (extractArray($input,&$1)) {
        ;
    } else {
        SWIG_ConvertPtr($input,(void **) &v, $&1_descriptor,1);
        $1 = *v;
    }
};
%typemap(in) const Array& (Array temp) {
    if (extractArray($input,&temp)) {
        $1 = &temp;
    } else {
        SWIG_ConvertPtr($input,(void **) &$1,$1_descriptor,1);
    }
};
%typecheck(QL_TYPECHECK_ARRAY) Array {
    /* native sequence? */
    if (PyTuple_Check($input) || PyList_Check($input)) {
        Size size = PySequence_Size($input);
        if (size == 0) {
            $1 = 1;
        } else {
            PyObject* o = PySequence_GetItem($input,0);
            if (PyNumber_Check(o))
                $1 = 1;
            else
                $1 = 0;
            Py_DECREF(o);
        }
    } else {
        /* wrapped Array? */
        Array* v;
        if (SWIG_ConvertPtr($input,(void **) &v,
                            $&1_descriptor,0) != -1)
            $1 = 1;
        else
            $1 = 0;
    }
}
%typecheck(QL_TYPECHECK_ARRAY) const Array & {
    /* native sequence? */
    if (PyTuple_Check($input) || PyList_Check($input)) {
        Size size = PySequence_Size($input);
        if (size == 0) {
            $1 = 1;
        } else {
            PyObject* o = PySequence_GetItem($input,0);
            if (PyNumber_Check(o))
                $1 = 1;
            else
                $1 = 0;
            Py_DECREF(o);
        }
    } else {
        /* wrapped Array? */
        Array* v;
        if (SWIG_ConvertPtr($input,(void **) &v,
                            $1_descriptor,0) != -1)
            $1 = 1;
        else
            $1 = 0;
    }
}

%typemap(in) Matrix (Matrix* m) {
    if (PyTuple_Check($input) || PyList_Check($input)) {
        Size rows, cols;
        rows = (PyTuple_Check($input) ?
                PyTuple_Size($input) :
                PyList_Size($input));
        if (rows > 0) {
            // look ahead
            PyObject* o = PySequence_GetItem($input,0);
            if (PyTuple_Check(o) || PyList_Check(o)) {
                cols = (PyTuple_Check(o) ?
                        PyTuple_Size(o) :
                        PyList_Size(o));
                Py_DECREF(o);
            } else {
                PyErr_SetString(PyExc_TypeError, "Matrix expected");
                Py_DECREF(o);
                return NULL;
            }
        } else {
            cols = 0;
        }
        $1 = Matrix(rows,cols);
        for (Size i=0; i<rows; i++) {
            PyObject* o = PySequence_GetItem($input,i);
            if (PyTuple_Check(o) || PyList_Check(o)) {
                Size items = (PyTuple_Check(o) ?
                                        PyTuple_Size(o) :
                                        PyList_Size(o));
                if (items != cols) {
                    PyErr_SetString(PyExc_TypeError,
                        "Matrix must have equal-length rows");
                    Py_DECREF(o);
                    return NULL;
                }
                for (Size j=0; j<cols; j++) {
                    PyObject* d = PySequence_GetItem(o,j);
                    if (PyFloat_Check(d)) {
                        $1[i][j] = PyFloat_AsDouble(d);
                        Py_DECREF(d);
                    } else if (PyInt_Check(d)) {
                        $1[i][j] = Real(PyInt_AsLong(d));
                        Py_DECREF(d);
                    } else {
                        PyErr_SetString(PyExc_TypeError,"doubles expected");
                        Py_DECREF(d);
                        Py_DECREF(o);
                        return NULL;
                    }
                }
                Py_DECREF(o);
            } else {
                PyErr_SetString(PyExc_TypeError, "Matrix expected");
                Py_DECREF(o);
                return NULL;
            }
        }
    } else {
        SWIG_ConvertPtr($input,(void **) &m,$&1_descriptor,1);
        $1 = *m;
    }
};
%typemap(in) const Matrix & (Matrix temp) {
    if (PyTuple_Check($input) || PyList_Check($input)) {
        Size rows, cols;
        rows = (PyTuple_Check($input) ?
                PyTuple_Size($input) :
                PyList_Size($input));
        if (rows > 0) {
            // look ahead
            PyObject* o = PySequence_GetItem($input,0);
            if (PyTuple_Check(o) || PyList_Check(o)) {
                cols = (PyTuple_Check(o) ?
                        PyTuple_Size(o) :
                        PyList_Size(o));
                Py_DECREF(o);
            } else {
                PyErr_SetString(PyExc_TypeError, "Matrix expected");
                Py_DECREF(o);
                return NULL;
            }
        } else {
            cols = 0;
        }

        temp = Matrix(rows,cols);
        for (Size i=0; i<rows; i++) {
            PyObject* o = PySequence_GetItem($input,i);
            if (PyTuple_Check(o) || PyList_Check(o)) {
                Size items = (PyTuple_Check(o) ?
                                        PyTuple_Size(o) :
                                        PyList_Size(o));
                if (items != cols) {
                    PyErr_SetString(PyExc_TypeError,
                        "Matrix must have equal-length rows");
                    Py_DECREF(o);
                    return NULL;
                }
                for (Size j=0; j<cols; j++) {
                    PyObject* d = PySequence_GetItem(o,j);
                    if (PyFloat_Check(d)) {
                        temp[i][j] = PyFloat_AsDouble(d);
                        Py_DECREF(d);
                    } else if (PyInt_Check(d)) {
                        temp[i][j] = Real(PyInt_AsLong(d));
                        Py_DECREF(d);
                    } else {
                        PyErr_SetString(PyExc_TypeError,"doubles expected");
                        Py_DECREF(d);
                        Py_DECREF(o);
                        return NULL;
                    }
                }
                Py_DECREF(o);
            } else {
                PyErr_SetString(PyExc_TypeError, "Matrix expected");
                Py_DECREF(o);
                return NULL;
            }
        }
        $1 = &temp;
    } else {
        SWIG_ConvertPtr($input,(void **) &$1,$1_descriptor,1);
    }
};
%typecheck(QL_TYPECHECK_MATRIX) Matrix {
    /* native sequence? */
    if (PyTuple_Check($input) || PyList_Check($input)) {
        $1 = 1;
    /* wrapped Matrix? */
    } else {
        Matrix* m;
        if (SWIG_ConvertPtr($input,(void **) &m,
                            $&1_descriptor,0) != -1)
            $1 = 1;
        else
            $1 = 0;
    }
}
%typecheck(QL_TYPECHECK_MATRIX) const Matrix & {
    /* native sequence? */
    if (PyTuple_Check($input) || PyList_Check($input)) {
        $1 = 1;
    /* wrapped Matrix? */
    } else {
        Matrix* m;
        if (SWIG_ConvertPtr($input,(void **) &m,
                            $1_descriptor,0) != -1)
            $1 = 1;
        else
            $1 = 0;
    }
}
//#endif

class Array {
    //#if defined(SWIGPYTHON) || defined(SWIGRUBY)
    %rename(__len__)   size;
    //#endif
  public:
    Array();
    Array(Size n, Real fill = 0.0);
    Array(const Array&);
    Size size() const;
    %extend {
        std::string __str__() {
            std::ostringstream out;
            out << *self;
            return out.str();
        }
        //#if defined(SWIGPYTHON) || defined(SWIGRUBY) || defined(SWIGR)
        Array __add__(const Array& a) {
            return Array(*self+a);
        }
        Array __sub__(const Array& a) {
            return Array(*self-a);
        }
        Array __mul__(Real a) {
            return Array(*self*a);
        }
        Real __mul__(const Array& a) {
            return QuantLib::DotProduct(*self,a);
        }
        Array __mul__(const Matrix& a) {
            return *self*a;
        }
        Array __div__(Real a) {
            return Array(*self/a);
        }
        //#endif
        //#if defined(SWIGPYTHON)
        Array __rmul__(Real a) {
            return Array(*self*a);
        }
        Array __getslice__(Integer i, Integer j) {
            Integer size_ = static_cast<Integer>(self->size());
            if (i<0)
                i = size_+i;
            if (j<0)
                j = size_+j;
            i = std::max(0,i);
            j = std::min(size_,j);
            Array tmp(j-i);
            std::copy(self->begin()+i,self->begin()+j,tmp.begin());
            return tmp;
        }
        void __setslice__(Integer i, Integer j, const Array& rhs) {
            Integer size_ = static_cast<Integer>(self->size());
            if (i<0)
                i = size_+i;
            if (j<0)
                j = size_+j;
            i = std::max(0,i);
            j = std::min(size_,j);
            QL_ENSURE(static_cast<Integer>(rhs.size()) == j-i,
                      "arrays are not resizable");
            std::copy(rhs.begin(),rhs.end(),self->begin()+i);
        }
        bool __nonzero__() {
            return (self->size() != 0);
        }
        bool __bool__() {
            return (self->size() != 0);
        }
        //#endif
        //#if defined(SWIGPYTHON) || defined(SWIGRUBY)
        Real __getitem__(Integer i) {
            Integer size_ = static_cast<Integer>(self->size());
            if (i>=0 && i<size_) {
                return (*self)[i];
            } else if (i<0 && -i<=size_) {
                return (*self)[size_+i];
            } else {
                throw std::out_of_range("array index out of range");
            }
        }
        void __setitem__(Integer i, Real x) {
            Integer size_ = static_cast<Integer>(self->size());
            if (i>=0 && i<size_) {
                (*self)[i] = x;
            } else if (i<0 && -i<=size_) {
                (*self)[size_+i] = x;
            } else {
                throw std::out_of_range("array index out of range");
            }
        }
        //#endif
    }
};

// 2-D view

%{
typedef QuantLib::LexicographicalView<Array::iterator> DefaultLexicographicalView;
typedef QuantLib::LexicographicalView<Array::iterator>::y_iterator DefaultLexicographicalViewColumn;
%}

//#if defined(SWIGPYTHON) || defined(SWIGRUBY) || defined(SWIGR)
class DefaultLexicographicalViewColumn {
  private:
    // access control - no constructor exported
    DefaultLexicographicalViewColumn();
  public:
    %extend {
        Real __getitem__(Size i) {
            return (*self)[i];
        }
        void __setitem__(Size i, Real x) {
            (*self)[i] = x;
        }
    }
};
//#endif

%rename(LexicographicalView) DefaultLexicographicalView;
class DefaultLexicographicalView {
  public:
    Size xSize() const;
    Size ySize() const;
    %extend {
        DefaultLexicographicalView(Array& a, Size xSize) {
            return new DefaultLexicographicalView(a.begin(),a.end(),xSize);
        }
        std::string __str__() {
            std::ostringstream s;
            for (Size j=0; j<self->ySize(); j++) {
                s << "\n";
                for (Size i=0; i<self->xSize(); i++) {
                    if (i != 0)
                        s << ",";
                    Array::value_type value = (*self)[i][j];
                    s << value;
                }
            }
            s << "\n";
            return s.str();
        }
        //#if defined(SWIGPYTHON) || defined(SWIGRUBY) || defined(SWIGR)
        DefaultLexicographicalViewColumn __getitem__(Size i) {
            return (*self)[i];
        }
        //#endif
    }
};

%{
typedef QuantLib::Matrix::row_iterator MatrixRow;
using QuantLib::outerProduct;
using QuantLib::transpose;
using QuantLib::SVD;
%}

//#if defined(SWIGPYTHON) || defined(SWIGRUBY)
class MatrixRow {
  private:
    MatrixRow();
  public:
    %extend {
        Real __getitem__(Size i) {
            return (*self)[i];
        }
        void __setitem__(Size i, Real x) {
            (*self)[i] = x;
        }
    }
};
//#endif

class Matrix {
  public:
    Matrix();
    Matrix(Size rows, Size columns, Real fill = 0.0);
    Matrix(const Matrix&);
    Size rows() const;
    Size columns() const;
    %extend {
        std::string __str__() {
            std::ostringstream out;
            out << *self;
            return out.str();
        }
        //#if defined(SWIGPYTHON) || defined(SWIGRUBY)
        Matrix __add__(const Matrix& m) {
            return *self+m;
        }
        Matrix __sub__(const Matrix& m) {
            return *self-m;
        }
        Matrix __mul__(Real x) {
            return *self*x;
        }
        Array __mul__(const Array& x) {
            return *self*x;
        }
        Matrix __mul__(const Matrix& x) {
            return *self*x;
        }
        Matrix __div__(Real x) {
            return *self/x;
        }
        //#endif
        //#if defined(SWIGPYTHON) || defined(SWIGRUBY)
        MatrixRow __getitem__(Size i) {
            return (*self)[i];
        }
        //#endif
        //#if defined(SWIGPYTHON)
        Matrix __rmul__(Real x) {
            return x*(*self);
        }
        Array __rmul__(const Array& x) {
            return x*(*self);
        }
        Matrix __rmul__(const Matrix& x) {
            return x*(*self);
        }
        //#endif
    }
};

// functions

%{
using QuantLib::pseudoSqrt;
using QuantLib::SalvagingAlgorithm;
%}

struct SalvagingAlgorithm {
    //#if defined(SWIGPYTHON)
    %rename(NoAlgorithm) None;
    //#endif
    enum Type { None, Spectral };
};

Matrix transpose(const Matrix& m);
Matrix outerProduct(const Array& v1, const Array& v2);
Matrix pseudoSqrt(const Matrix& m, SalvagingAlgorithm::Type a);

class SVD {
  public:
    SVD(const Matrix&);
    const Matrix& U() const;
    const Matrix& V() const;
    Matrix S() const;
    const Array& singularValues() const;
};

#endif
  • setup.py
"""
setup.py file for QuantLibEx
"""

from distutils.core import setup, Extension

qlx_module = Extension(
    name='QuantLibEx._QuantLibEx',
    sources=['QuantLibEx/qlx_wrap.cpp'],
    include_dirs=['/usr/include/ql'], # QuantLib 头文件所在的目录
    library_dirs=['/usr/lib/'],       # QuantLib 库所在的目录
    libraries=['QuantLib']            # QuantLib 库的名字
    )

setup(
    name        = 'QuantLibEx',
    version     = '0.1',
    author      = "xrl",
    description = "Python bindings for the QuantLibEx library",
    ext_modules = [qlx_module],
    py_modules  = ['QuantLibEx.__init__','QuantLibEx.QuantLibEx'])
  • __init__.py
import sys
if sys.version_info.major >= 3:
    from .QuantLibEx import *
    from .QuantLibEx import _QuantLibEx
else:
    from QuantLibEx import *
    from QuantLibEx import _QuantLibEx
del sys

__author__ = 'xrl'

if hasattr(_QuantLibEx,'__version__'):
    __version__ = _QuantLibEx.__version__
elif hasattr(_QuantLibEx.cvar,'__version__'):
    __version__ = _QuantLibEx.cvar.__version__
else:
    print('Could not find __version__ attribute')

if hasattr(_QuantLibEx,'__hexversion__'):
    __hexversion__ = _QuantLibEx.__hexversion__
elif hasattr(_QuantLibEx.cvar,'__hexversion__'):
    __hexversion__ = _QuantLibEx.cvar.__hexversion__
else:
    print('Could not find __hexversion__ attribute')

__license__ = """
QuantLibEx ...
"""

原文地址:https://www.cnblogs.com/xuruilong100/p/12051908.html

时间: 2024-10-10 16:21:33

QuantLib 金融计算——自己动手封装 Python 接口(1)的相关文章

QuantLib 金融计算——自己动手封装 Python 接口(2)

目录 QuantLib 金融计算--自己动手封装 Python 接口(2) 概述 如何封装一项复杂功能? 寻找最小功能集合的策略 实践 估计期限结构参数 修改官方接口文件 下一步的计划 QuantLib 金融计算--自己动手封装 Python 接口(2) 概述 对于一项简单功能,通常只需要包装少数几个类就可以,正如<自己动手封装 Python 接口(1)>演示的那样. 下面,将演示如何包装 QuantLib 中的复杂功能,最终实现从固息债交易数据中估计期限结构模型的参数. 如何封装一项复杂功能

QuantLib 金融计算——基本组件之 Date 类

QuantLib 金融计算--基本组件之 Date 类 QuantLib 将金融领域的日期对象抽象为 Date 类,并提供了丰富的计算函数.需要注意的是,quantlib-python 中的 Date 类并不同于 python 自身包含的 datetime 类,也没有继承关系. 载入 QuantLib: import QuantLib as ql print(ql.__version__) 1.10 Date 对象的构造 Date 对象的构造方式有两种,分别是 Date(serialNumber

QuantLib 金融计算——基本组件之 InterestRate 类

如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--基本组件之 InterestRate 类 围绕收益率展开的若干计算(如计算贴现因子)是固定收益分析中最基础的部分.同时,由于固定收益产品在付息频率.计息方式.天数计算规则等细节方面的多样性,这一块的计算显得更加复杂繁琐.QuantLib 将与收益率有关的计算整合封装在 InterestRate 类,用户所作的只是按照规定配置特定的参数. 载入 QuantLib: import QuantLib as ql p

QuantLib 金融计算——随机过程之概述

目录 QuantLib 金融计算--随机过程之概述 框架 用法与接口 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之概述 载入模块 import QuantLib as ql print(ql.__version__) 1.12 框架 随机过程是金融工程中的一个核心概念,是沟通理论分析和计算实践的枢纽.quantlib-python 提供了一组成体系的类架构用于描述实际中最常见到的几种随机过程,以 1.12 版本为例: C++ 版本的实现提供了

QuantLib 金融计算

QuantLib 金融计算 QauntLib 入门 基本组件之 Date 类 基本组件之 Calendar 类 原文地址:https://www.cnblogs.com/xuruilong100/p/8711520.html

QuantLib 金融计算——收益率曲线之构建曲线(1)

目录 QuantLib 金融计算--收益率曲线之构建曲线(1) YieldTermStructure DiscountCurve DiscountCurve 对象的构造 ZeroCurve ZeroCurve 对象的构造 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--收益率曲线之构建曲线(1) 理论和实践上有多种方法可以构建与市场一致的收益率曲线,背后的方法论取决于市场上的可获得金融工具的流动性.在构建收益率曲线时有两个选项必须选定好:插值方法和所选的金

QuantLib 金融计算——收益率曲线之构建曲线(2)

目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 FittedBondDiscountCurve FittedBondDiscountCurve 的原理 FittedBondDiscountCurve 的构造 FittingMethod 类 拟合曲线 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--收益率曲线之构建

QuantLib 金融计算——数学工具之求解器

目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之求解器 载入模块 import QuantLib as ql import scipy from scipy.stats import norm print(ql.__version__) 1.12 概述 QuantLib 提供了多种类型的一维求解器,用以求解单

QuantLib 金融计算——数学工具之随机数发生器

目录 QuantLib 金融计算--数学工具之随机数发生器 概述 伪随机数 正态分布(伪)随机数 拟随机数 HaltonRsg SobolRsg 两类随机数的收敛性比较 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之随机数发生器 载入模块 import QuantLib as ql import scipy print(ql.__version__) 1.12 概述 随机模拟通常从产生均匀分布的随机数开始.假设 \(X \sim U [0, 1