ASP.NET Core on K8S深入学习(10)K8S包管理器Helm

本篇已加入《.NET Core on K8S学习实践系列文章索引》,可以点击查看更多容器化技术相关系列文章。

一、关于Helm

1.1 为何需要Helm?

  虽然K8S能够很好地组织和编排容器,但是缺少一个更高层次的应用打包工具,而Helm就是专门干这个事的。

  通过Helm能够帮助开发者定义、安装和升级Kubernetes中的容器云应用。同时,也可以通过Helm进行容器云应用的分享。

1.2 Helm的架构

  Helm的整体架构如下图(图片来源-Kubernetes中文社区)所示:

  

  Helm架构由Helm客户端、Tiller服务器端和Chart仓库所组成;

两个重要概念:

(1)Chart是创建一个应用的信息集合,包括各种K8S对象的配置模板、参数定义等,可以理解为是apt、yum中的软件安装包;

(2)Release是Chart的运行实例,代表了一个正在运行的应用。

  Tiller部署在Kubernetes中,Helm客户端从Chart仓库中获取Chart安装包,并通过与Tiller服务器的交互将其安装部署到Kubernetes集群中。

  简单说来,Helm客户端负责管理Chart,而 Tiller服务器则负责管理Release。

二、Helm的安装和使用

2.1 Helm客户端的安装

  执行以下命令将Helm客户端安装在能够执行kubectl命令的节点上,这里假设我们安装在k8s-master节点上进行示例演示:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

  也可以通过下面的方式安装:

wget https://storage.googleapis.com/kubernetes-helm/helm-v2.11.0-linux-amd64.tar.gz
tar -zxvf helm-v2.11.0-linux-amd64.tar.gz
cd linux-amd64/
cp helm /usr/local/bin/

  验证:查看helm版本

helm version

  

  补充:为了提高使用命令行的效率,建议安装helm命令补全脚本,命令如下:

cd ~ && helm completion bash > .helmrc echo "source .helmrc" >> .bashrc

  重新登录后,就可以方便地通过tab键来补全helm子命令和参数了,如下图所示,当我们输入helm install --之后按下Tab键,就会给我们参数提示了:

  

2.2 Tiller服务器的安装

  Tiller服务器本身也是作为容器化的一个应用运行在K8S集群中,这里我们简单执行下面的命令即可安装Tiller服务:

helm init

  执行以上命令,会如下图所示:

  

  看到上图中的提示信息,代表Helm服务端已经安装成功。

  这时,我们可以看看Tiller的Service、Deployment和Pod有没有启动起来:

  (1)Service & Deployment

  

  (2)Pod

  

  如果看到其Status不是Running,那么很有可能是镜像没有拉取下来,可以曲线救国:即下载可访问的镜像然后修改Tag!

docker pull fishead/gcr.io.kubernetes-helm.tiller:v2.11.0
docker tag fishead/gcr.io.kubernetes-helm.tiller:v2.11.0 gcr.io/kubernetes-helm/tiller:v2.11.0

  这时再次通过helm version命令验证一下:

  

  可以看到,我们已经可以成功看到客户端和服务端的版本信息了,证明客户端和服务端(Pod)都已经安装成功了!

2.3 Helm的使用准备

  Helm安装好后,我们可以通过以下helm search来查看当前可安装的Chart:

  

Note:Helm安装时会为我们配置好两个仓库,一个是stable官方仓库,另一个是local本地仓库,上图中显示的都是stable官方仓库中的Chart。  

  为了能够执行install安装,我们还需要事先为Tiller服务器添加集群权限,防止因Tiller服务器的权限不足而无法install。

# 创建serviceaccount资源tiller,属于kube-system命名空间
kubectl create serviceaccount -n kube-system tiller
# 创建 clusterrolebinding资源tiller-cluster-rule,集群角色为cluster-admin,用户为kube-system:tiller
kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller
# 修改deployment tiller-deploy的配置,增加字段spec.template.spec.serviceAccount
kubectl patch deploy -n kube-system tiller-deploy -p ‘{"spec":{"template":{"spec":{"serviceAccount":"tiller"}}}}‘

  

   至此,使用Helm的准备工作就到此结束,后面我们就可以开始实践安装Chart了!

三、MySQL Chart实践

3.1 初步安装MySQL Chart

  这里我们通过以下命令来通过官方仓库安装mysql:

helm install stable/mysql -n=edc-mysql --namespace=edc-charts

  其中,-n 代表 release的名字,--namespace 指定了其所在namespace。

  执行成功之后,会显示一屏幕的提示信息,其中Notes部分包含了release的使用方法,可以重点关注一下。

  这里我们通过以下命令来看看已经部署的release:

helm list

  

  可以看到,该release的状态已经是DEPLOYED,也可以看到其版本号是5.7.27。

  下面再看看service、deployment、pod以及pvc的情况:

  

  

  从上图可以看到,由于还没有位mysql准备PV(PersistentVolume,不了解此概念的童鞋可以参考这一篇《K8S数据管理》),导致当前release不可用,处于Pending状态。接下来我们就要先解决PV的问题,让release能够正常运行起来!在此之前,为了后续方便演示,这里现将此chart删除:

helm delete edc-mysql

3.2 为MySQL Chart准备PV

  首先,按照约定准备一个edc-mysql-pv.yml,如下所示:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: edc-mysql-pv
spec:
  capacity:
    storage: 8Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  #storageClassName: nfs
  nfs:
    path: /edc/k8s/nfsdata/edc-mysql-pv
    server: k8s-master

  这里申请了一个8G的PV,用于适配mysql chart的默认配置要求,当然我们也可以通过修改自定义values.yaml来修改。

3.3 定制化安装MySQL Chart

  Helm有两种方式传递配置参数实现定制化安装,一种是指定自定义的values文件,另一种是通过--set直接传入参数值。这里我们演示通过第二种,这里我们重新安装mysql chart:

helm install stable/mysql -namespace=edc-charts --set mysqlRootPassword=edc123456 -n edison

  验证结果如下图所示:

  

3.4 升级和回滚Release

  这里假设我安装的版本是5.7.14,这里我将其先升级为5.7.26来演示:

helm upgrade --set imageTag=5.7.26 edison stable/mysql

  通过查看可以看到image已经换为了5.7.26:

  

  通过helm history可以查看release的所有历史版本:

  

  Note:这里Revision 1是5.7.14版本,Revision 2是5.7.26版本,Revision 3是5.7.27版本。

  这里我们通过helm rollback回退到Revision 1版本(即5.7.14版本),可以看到已经成功回退到了5.7.14版本:

  

四、自定义Chart实践

4.1 创建Chart

  首先,通过以下命令创建一个chart命名为mychart:

helm create mychart

  Helm会帮我们创建目录mychart,并生成各种chart文件。

  

  这里我们需要关注的是values.yaml,修改其中的内容为我们之前演示的ASP.NET Core WebAPI应用镜像:

# Default values for mychart.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.

replicaCount: 1

image:
  repository: edisonsaonian/k8s-demo
  tag: latest
  pullPolicy: IfNotPresent

service:
  type: NodePort
  port: 80
  nodePort: 31000

ingress:
  enabled: false

resources:
  limits:
    cpu: 1
    memory: 228Mi
  requests:
    cpu: 100m
    memory: 128Mi

  这里我们选择NodePort的方式让外部可以通过31000端口访问到API,也设置了资源限制。

  此外,我们再修改一下Templates目录下的deployment和service两个模板文件:

  (1)deployment模板:重点关注两个探针的配置

apiVersion: apps/v1beta2
kind: Deployment
metadata:
  name: {{ include "mychart.fullname" . }}
  labels:
    app.kubernetes.io/name: {{ include "mychart.name" . }}
    helm.sh/chart: {{ include "mychart.chart" . }}
    app.kubernetes.io/instance: {{ .Release.Name }}
    app.kubernetes.io/managed-by: {{ .Release.Service }}
spec:
  replicas: {{ .Values.replicaCount }}
  selector:
    matchLabels:
      app.kubernetes.io/name: {{ include "mychart.name" . }}
      app.kubernetes.io/instance: {{ .Release.Name }}
  template:
    metadata:
      labels:
        app.kubernetes.io/name: {{ include "mychart.name" . }}
        app.kubernetes.io/instance: {{ .Release.Name }}
    spec:
      containers:
        - name: {{ .Chart.Name }}
          image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"
          imagePullPolicy: {{ .Values.image.pullPolicy }}
          ports:
            - name: http
              containerPort: 80
              protocol: TCP
          # 探针  检测项目是否存活
          livenessProbe:
            httpGet:
              path: /api/values
              port: http
          # 探针  检测项目是否启动成功
          readinessProbe:
            httpGet:
              path: /api/values
              port: http
            initialDelaySeconds: 30
            periodSeconds: 60
          resources:
{{ toYaml .Values.resources | indent 12 }}
    {{- with .Values.nodeSelector }}
      nodeSelector:
{{ toYaml . | indent 8 }}
    {{- end }}
    {{- with .Values.affinity }}
      affinity:
{{ toYaml . | indent 8 }}
    {{- end }}
    {{- with .Values.tolerations }}
      tolerations:
{{ toYaml . | indent 8 }}
    {{- end }}

  (2)service模板:重点关注NodePort的配置

apiVersion: v1
kind: Service
metadata:
  name: {{ include "mychart.fullname" . }}
  labels:
    app.kubernetes.io/name: {{ include "mychart.name" . }}
    helm.sh/chart: {{ include "mychart.chart" . }}
    app.kubernetes.io/instance: {{ .Release.Name }}
    app.kubernetes.io/managed-by: {{ .Release.Service }}
spec:
  type: {{ .Values.service.type }}
  ports:
    - port: {{ .Values.service.port }}
      targetPort: http
      # 添加nodePort
      nodePort: {{ .Values.service.nodePort }}
      protocol: TCP
      name: http
  selector:
    app.kubernetes.io/name: {{ include "mychart.name" . }}
    app.kubernetes.io/instance: {{ .Release.Name }}

  编写完成后,通过 helm lint 可以帮助我们快速验证是否有语法错误:

  

4.2 安装Chart

  没有语法错误检测之后,便可以开始安装Chart了,正式安装之前我们可以通过以下命令来模拟安装,它会输出每个模板生成的yaml内容,帮助你检查生成的yaml内容是否是你想要的或者正确的。

helm install --dry-run --debug

  然后,这里我们选择本地安装Chart:

helm install mychart -n edc-api-release --namespace=aspnetcore

  只需要简单的一句话,就可以将chart部署到K8S集群中了,下面我们通过在外部访问NodePort 31000端口来验证一下是否部署成功:

  (1)Node 1

  

  (2)Node 2

  

  两个Node节点都可以访问到,证明部署成功!

4.3 添加Chart到仓库

  通过测试之后,我们的Chart就可以发布到仓库中供团队成员使用了,像阿里云、腾讯云等云服务商都已经提供了完善的Helm远程仓库,我们也可以自己搭建一个仓库,任何的Web Server其实都可以作为一个chart仓库。

  下面我们在k8s-master上启动给一个httpd容器,让它来作为我们的本地chart仓库。

docker run -d -p 8080:80 -v /var/www:/usr/local/apache2/htdocs/ httpd

  然后,我们将mychart进行打包,helm会将其打包为一个tgz包:

helm package mychart

  然后,我们为mychart包生成仓库的index文件,并将其推送到本地chart仓库中:

mkdir myrepo
mv mychart-0.1.0.tgz myrepo/
helm repo index myrepo/ --url http://192.168.2.100:8080/charts

  这里我们将httpd容器中的charts目录作为chart仓库,因此需要提前创建charts目录,并将打好的包和index.yaml文件也上传到该目录中:

  

  最后,我们将新仓库添加到helm:

helm repo add edc-repo http://192.168.2.100:8080/charts
helm repo list

  

  可以看到,edc-repo已经添加到了helm中,代表可以从新的本地仓库中下载和安装mychart了!

4.4 使用自定义Chart

  现在我们来从本地的新仓库中下载和安装mychart:

helm install edc-repo/mychart -n mychart-release --namespace=aspnetcore

  安装完成后再次验证:

  (1)Node 1

  

  (2)Node 2

  

  如果以后仓库添加了新的chart,需要使用以下命令来更新本地的index文件:

helm repo update

五、小结

  本文介绍了K8S的包管理器Helm的基本概念与安装和使用,Helm能够帮助我们像使用apt或yum那样管理安装、部署、升级和删除容器化应用,最后演示了如何为我们的ASP.NET Core API应用开发自己的chart,并在团队中共享chart。当然,关于Helm,笔者也是初学,还有很多地方没有研究,希望此文能给初学者一点帮助,谢谢!

参考资料

(1)CloudMan,《每天5分钟玩转Kubernetes

(2)李振良,《一天入门Kubernets教程

(3)马哥(马永亮),《Kubernetes快速入门

(4)潘猛,《Kubernetes笔记之Helm

(5)雪雁(心莱科技),《利用Helm简化Kubernetes应用部署(二)

(6)周国通,《Kubernetes实战篇之Helm填坑与基本命令

作者:周旭龙

出处:https://edisonchou.cnblogs.com

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。

原文地址:https://www.cnblogs.com/edisonchou/p/aspnet_core_on_k8s_deepstudy_part10.html

时间: 2024-10-12 09:23:07

ASP.NET Core on K8S深入学习(10)K8S包管理器Helm的相关文章

NET Core 静态文件及JS包管理器(npm, Bower)的使用

NET Core 静态文件及JS包管理器(npm, Bower)的使用 文章目录 在 ASP.NET Core 中添加静态文件 使用npm管理JavaScript包 使用Bower管理JavaScript包 在 ASP.NET Core 中添加静态文件 虽然ASP.NET主要大都做着后端的事情,但前端的一些静态文件也是很重要的.在ASP.NET Core中要启用静态文件,需要Microsoft.AspNetCore.StaticFiles组件.可以通过Nuget添加,或者在project.jso

JAVA学习Swing章节流布局管理器简单学习

package com.swing; import java.awt.Container; import java.awt.FlowLayout; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.WindowConstants; /** * 1:流(FlowLayout)布局管理器是布局管理器中最基本的布局管理器,流布局管理器在整个容器中 * 的布局正如其名,像流一样从左到右摆放组件,直到占据了这

第17期马哥Linux学习之rpm包管理功能全解

RPM包管理器最早是由Red Hat公司研发的一款Linux上的程序包管理器,文件包的后缀名为".rpm".目前是GNU/Linux下软件包资源最丰富的软件包类型之一. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rpm包命名格式: name-VERSION-release.arch.rpm 包的名字-版本号-发行号.架构平台.rpm VERSION:major.min

Linux学习之RPM包管理

在linux中有人多的软件使用,比如我们使用的ifconfig,fdisk,btrfs文件系统等.可能这些软件在你原有的linux系统中并不存在,那么我们如何去使用这些工具呢.我们知道windows在需要软件的时候需要安装,当然对于linux系统一样需要安装.在linux下常用的安装工具我们使用的是rpm程序包(当然我们这边是针对CentOS而言),那么什么是rpm,如何安装rpm包以及使用rpm包做一些操作等,在下面的内容中将提到. 一.什么是RPM RPM全称为"RedHatPackage

前端的学习--包管理器Bower

今天自己用Angular写东西的时候,下载了Angular-seed项目,发现需要用到bower,之前也使用过,没有仔细了解,今天趁机了解到一些. bower的官网地址: http://bower.io/ Bower是一个客户端技术的软件包管理器,它可用于搜索.安装和卸载如JavaScript.HTML.CSS之类的网络资源.它擅长前端的包管理,通过其API展示了包依赖模型.使得项目不存在系统级的依赖,不同的应用程序间也不会共享依赖,整个依赖树是扁平的. 为什么使用Bower?摘自segment

Linux学习笔记——程序包管理之rpm命令

RPM rpm是Linux上一个很好用的程序包管理管理器,它具有安装.卸载.升级.查询.校验.数据库维护等功能. 下面分别介绍一下rpm的各个功能: 安装: rpm {-i|--install} [install-options] PACKAGE_FILE ... -v:详细显示安装过程 -vv:相对-v更加详细 -h: 以#显示程序包管理执行进度:每个#表示2%的进度 安装过程如图 另外还有一些其他选项 [install-options] --test: 测试安装,但不真正执行安装过程:dry

Linux学习笔记——程序包管理之yum

YUM yum 是rpm程序包管理器的前段管理器.yum 主要功能是更方便的添加/删除/更新RPM 包,自动解决包的倚赖性问题,便于管理大量系统的更新问题. yum 的操作是基于yum 仓库进行的 yum repository: yum repo  yum仓库 存储了众多rpm包,以及包的相关的元数据文件(放置于特定目录下:repodata): 文件服务器: ftp:// http:// nfs:// file:/// yum 的配置 配置文件 /etc/yum.conf:为所有仓库提供公共配置

学习笔记 程序包管理

RPM程序包管理 RPM全称是Red Hat Package Manager(Red Hat包管理器).RPM本质上就是一个包,包含可以立即在特定机器体系结构上安装和运行的Linux软件. 几乎所有的Linux发行版本都使用某种形式的软件包管理安装.更新和卸载软件.与直接从源代码安装相比,软件包管理易于安装和卸载:易于更新已安装的软件包:易于保护配置文件:易于跟踪已安装文件. RPM包安装: 使用rpm命令进行安装 rpm -ivh 如果rpm包存在依赖关系,程序包安装失败 如果忽略依赖关系, 

linux 学习笔记 TAR包管理

>显示gong.tar 文件内容 #tar tf gong.tar ./epuinfo.txt ./smart/ ./smart/smartsuite-2.1-2.i386.rpm ./smart.txt ./tar_creat.txt >从tar文件中取出文件对当前目录下的gong.tar解包 #tar xvf gong.tar 压缩/解压缩工具 >gzip/gunzip  --文件扩展名->.gz >zip/unzip --文件扩展名->zip >tar --