概率统计——期望、方差与最小二乘法

本文始发于个人公众号:TechFlow

今天这篇文章和大家聊聊期望和方差

期望

期望这个概念我们很早就在课本里接触了,维基百科的定义是:它表示的是一个随机变量的值在每次实验当中可能出现的结果乘上结果概率的总和。换句话说,期望值衡量的是多次实验下,所有可能得到的状态的平均结果。

我们举两个简单的例子,第一个例子是掷骰子。

我们都知道一个骰子有6个面,分别是1,2,3,4,5,6。我们每次投掷得到其中每一个面朝上的概率都是一样的,是1/6。对于投骰子这个事件而言,它的期望应该是:

\[E(X) = 1 * \frac{1}{6} + 2 * \frac{1}{6} + \cdots + 6 * \frac{1}{6} = 3.5\]

也就是说,我们如果投掷大量的骰子,得到的平均结果应该是3.5,但是骰子上并没有这个点数可以被掷出来。

另一个经典的例子就是博弈游戏,老赌徒们水平各有高低,但一定深谙期望这个概念。举个最简单的例子,比如美国轮盘当中一个有38个数字,每次可以押一个数字。如果押中了,赌徒可以获得35倍的奖金,如果押不中,钱打水漂。我们来算下期望:

\[E(X) = -1 * \frac{37}{38} + 35 * \frac{1}{38}= -\frac{3}{38}\]

我们可以发现这个期望是一个负值,也就是说短期内可能是盈利的,如果我们多次游戏,必输无疑。

方差

第二个概念是方差,方差衡量的是变量的离散程度。它的公式是:\(V(X) = E((X - \mu)^2)\),这里的\(\mu\)指的是就是变量X的期望值。也就是说,方差指的是变量X与它期望值平方差的期望值,方差越大,表示X变量离散化越严重,越小,说明X波动范围越小

由于\((X-\mu)^2\)一定是一个非负值,所以变量的方差一定是非负的。我们同样用赌博举个例子,假设我们现在有一个抛硬币的游戏。每次抛一枚硬币,如果正面朝上则赢10000元,如果背面朝上呢,则输9000元。我们很容易看出来,这个游戏的期望是500元。也就是说我们平均每轮能赢500元。

但是,我们不用算就可以看出来这个游戏的方差很大。如果我们真的去玩这个游戏,大概率会在赢得很多和输得很惨之间徘徊,很难稳定盈利。也有可能我们还没有来得及赢钱就破产了。

通过方差这个概念,我们很容易理解为什么在游戏当中,倍押策略不可行。

所谓的倍押策略是指,在一个50%赢率的游戏当中,我们当前如果输了钱,那么下一轮则倍押当前输的钱。如果还输了继续倍押,直到赢为止。通过这种策略呢,可以抵抗连续输的风险,理论上来说只要最终赢一把,就可以赢回之前所有的钱。

我们了解了方差的概念之后,很容易发现这个策略是不可行的,因为这种策略的方差非常大。在盈利之前,很容易震荡到一个不可能承受的值,也就是会出现倾家荡产也不够押下一把的情况。

标准差

下一个概念是标准差,理解了方差,标准差也就很好理解。标准差就是方差的平方根,和标准差一样,同样用来反映样本的离散情况。

由于方差和标准差的定义和使用情况非常类似,所以一般情况下,我们使用方差的场景会更多。所以这里不多介绍,大家知道这个概念和计算方法即可。

最小二乘法

最小二乘法非常出名,现在机器学习和深度学习很多模型都广泛使用。所谓的二乘,其实就是平方的意思。也被称为最小平方法,是一种用来评估预测结果与实际误差的方法。

最小我们很容易理解,这里的平方是什么呢?

平方指的是误差的平方,我们写出公式,就很容易明白了:

\[SE=\sum(y_{pred} - y)^2\]

这里的\(y_{pred}\)指的是预测值,而y指的是样本值。从公式我们可以看出来,其实平方误差就是所有样本预测值与真实值误差的平方和。最小二乘法就是优化这个平方误差,使得它尽可能小,来寻找最佳的\(y_{pred}\)的方法。

这个方法主要用在回归模型当中。

我们简单介绍一下回归模型的概念,在机器学习领域,最常用的模型可以分为回归模型与分类模型。这两者的差别就在于模型预测的结果不同,在分类模型当中,模型的预测结果是样本所属的类别。而回归模型,模型的预测结果则是一个具体的值

举个简单的例子,比如我今天要设计一个模型预测明天股票是涨是跌,显然股票要么涨,要么跌,只有两种情况。所以这是一个分类模型,但如果我要预测明天股票的具体指数,那么它的结果是一个具体的值,这个就是回归模型

我们通常使用平方误差来反应回归模型的预测能力,我们通过减小误差,提升模型的能力,达到更加精确的效果。问题来了,我们怎么减小误差,为什么减小误差就能提升模型的能力呢?

首先,虽然我们将模型的预测结果简写成\(y_{pred}\),这个\(y_{pred}\)不是天上掉下来的,它背后是模型通过一些参数以及自变量x计算出来的。举个最简单的例子,如果我们把一个一元一次函数看成是一个回归模型,那么\(y_{pred} = wx + b\)。这里的w和b就是参数。

我们减小模型的平方误差,也就是找到更好的w和b,使得它计算得到的\(y_{pred}\)更加精确,误差更小。

那么,我们怎么减小误差呢?

我们先来观察一下误差平方和的公式,可以发现,它是一个二次函数。我们高中的时候就曾经学过,二次函数求极值,可以通过求导得到。除了求导之外,还有一些其他的最优化方法,这些不是本文的重点,会在以后介绍线性回归模型文章和大家分享。

最后,我们再回顾一下最小平方和和方差的公式,不知道大家有没有什么感觉。如果我们把样本真实的结果看成是期望值,那么误差的平方和不就和方差一样了吗?

我个人认为是可以这么理解的,就好像方差衡量的是样本针对期望值的离散程度一样,误差平方和反应的是预测结果针对真实值的离散情况。自然预测结果在真实值离散程度越低,模型的效果越好。所以这两个概念的本质是相通的。

期望、方差的概念我们大多数人都非常熟悉,而误差平方和和最小二乘法则要陌生一些。希望大家通过本文,可以将对期望和误差的理解迁移到误差平方和和最小二乘法上。因为知识迁移一定是最快的学习路径。

今天的文章就到这里,希望大家有所收获。如果喜欢本文,请顺手点个关注吧。

原文地址:https://www.cnblogs.com/techflow/p/12232364.html

时间: 2024-10-11 12:23:07

概率统计——期望、方差与最小二乘法的相关文章

概率统计

概率统计 欢迎关注我的博客:http://blog.csdn.NET/hit2015spring 条件概率 设和是任意两个事件,且,则称为事件在事件发生的条件下发生的条件概率.记作: \begin{equation} P(A|B)=\frac{P(AB)}{P(B)} \end{equation} 这里可以理解是,在事件发生的情况里面去寻找事件也在的例子,就是条件概率,有一种归一化的感觉,也有一种找出全局,再去挑局部的概念. 引入一个定理: (两个事件的积的概率)=(其中一个事件的概率)(另一个

概率统计21——指数分布和无记忆性

指数分布(Exponential distribution)是一种连续型概率分布,可以用来表示独立随机事件发生的时间间隔的概率,比如婴儿出生的时间间隔.旅客进入机场的时间间隔.打进客服中心电话的时间间隔.系统出现bug的时间间隔等等. 指数分布的由来 指数分布与泊松分布存在着联系,它实际上可以由泊松分布推导而来. 泊松分布(概率统计15)中已经介绍过泊松分布,除了作为二项分布的近似外,当独立事件发生的频率固定时,泊松分布还可以刻画算单位时间内事件发生次数的概率分布. 假设某个公司有一个带伤上线的

概率统计----协方差

????机器视觉中,常用到协方差相关的知识,特别是基于统计框架下的机器学习算法,几乎无处不在的用到它,因此了解协方差是再基础不过的了.这里推荐一个很不错的基础教程:协方差的意义和计算公式 均值和方差 引入协方差之前,先简单回顾下概率统计中的两个重要基础概念:均值和方差.均值,顾名思义就是一堆样本的平均值,方差就是样本和均值的平均偏差.对于给定的n个样本,那么样本集的均值和方差可以分别这样来定义: 名称 公式 解释 均值 样本的平均值,即样本的中心点,例如{1 2,3,4}的均值是2.5 标准差

HDU 4870 Rating(概率、期望、推公式) && ZOJ 3415 Zhou Yu

其实zoj 3415不是应该叫Yu Zhou吗...碰到ZOJ 3415之后用了第二个参考网址的方法去求通项,然后这次碰到4870不会搞.参考了chanme的,然后重新把周瑜跟排名都反复推导(不是推倒)四五次才上来写这份有抄袭嫌疑的题解... 这2题很类似,多校的rating相当于强化版,不过原理都一样.好像是可以用高斯消元做,但我不会.默默推公式了. 公式推导参考http://www.cnblogs.com/chanme/p/3861766.html#2993306 http://www.cn

【BZOJ-4008】亚瑟王 概率与期望 + DP

4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 515[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个

应用概率统计模板

apsart.cls 1 % !Mode:: "TeX:UTF-8" 2 %% 3 %% This is file `APSart.cls', 4 %% 5 %% Copyright 2006-2012 6 %% 7 %% ---------------------------------------------------------------------- 8 %% 9 %% It may be distributed and/or modified under the 10 %

概率和期望DP

概率和期望DP(整理) 概率DP顺着推,期望DP逆着递推求解 概率,又称或然率.机会率.机率(几率)或可能性,是概率论的基本概念.概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小.越接近1,该事件更可能发生:越接近0,则该事件更不可能发生.人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例. 期望就是加权平均. 1.期望值是指人们对所实现的目标主观上的一种估计: 2.期望值是指人们对自己的行为和努力能否导致所企求之

【BZOJ-3450】Tyvj1952Easy 概率与期望DP

3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 468  Solved: 353[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o.比如ooxxxxooooxxx

概率统计 - 07 随机事件及其概率

概率统计 - 07 随机事件及其概率 一.随机事件 1.随机试验与样本空间 2.随机事件与集合 3.事件的关系与运算 二.事件的概率 1.古典概率 2.概率的性质 3.古典概率的计算 4.概率的统计定义 三.事件的独立性 1.条件概率 2.乘法公式 3.事件的独立性 4.全概率公式 概率统计 - 07 随机事件及其概率,码迷,mamicode.com