二叉树遍历 A1086.Tree Traversals Again(25) (转化为给定前序和中序列,求后序)

#include <bits/stdc++.h>
#include <stdio.h>
#include <stdlib.h>
#include <queue>
using namespace std;
const int maxn = 50;
struct node{
    int data;
    node* lchild;
    node* rchild;
};
int pre[maxn],in[maxn],post[maxn];
int n;
node* create(int preL,int preR,int inL,int inR){
    if(preL > preR){
        return NULL;
    }
    node* root = new node;
    int temp = pre[preL];
    root->data = temp;
    int k;
    for(int i = inL;i<=inR;++i){
        if(in[i] == temp){
            k = i;
        }
    }
    int numLeft = k - inL;
    root->lchild = create(preL+1,preL + numLeft,inL,k - 1);
    root->rchild = create(preL + numLeft + 1,preR,k+1,inR);
    return root;
}
int num = 0;
void postOrder(node *root){
    if(root == NULL){
        return;
    }
    postOrder(root->lchild);
    postOrder(root->rchild);
    printf("%d",root->data);
    num++;
    if(num < n){
        printf(" ");
    }
}

int main(){
    scanf("%d",&n);
    char str[5];
    stack<int> st;
    int x,preList,inList;
    preList = 0;
    inList = 0;
    for(int i=0;i< 2*n;++i){
        scanf("%s",str);
        if(strcmp(str,"Push")==0){
            scanf("%d",&x);
            st.push(x);
            pre[preList] = x;
            preList++;
        }else{
            x = st.top();
            st.pop();
            in[inList] = x;
            inList++;
        }
    }
    node* root = create(0,n-1,0,n-1);
    postOrder(root);
    system("pause");
    return 0;
}

原文地址:https://www.cnblogs.com/JasonPeng1/p/12231656.html

时间: 2024-12-14 05:45:37

二叉树遍历 A1086.Tree Traversals Again(25) (转化为给定前序和中序列,求后序)的相关文章

hdu1710-Binary Tree Traversals (由二叉树的先序序列和中序序列求后序序列)

http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4210    Accepted Submission(s): 1908 Problem Description A binary tree is a

A1086. Tree Traversals Again (25)

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop()

已知二叉树的先序遍历和中序遍历序列求后序遍历序列

package algorithm01; import java.util.Scanner; /** * 给出先序遍历和中序遍历序列求出二叉树的后续遍历序列 * @author wxisme * */ public class ToReverse { public static void main(String[] args) { Scanner scan = new Scanner(System.in); String s1, s2; while(scan.hasNext()) { s1 =

根据二叉树的先序遍历序列和中序遍历序列求后序遍历序列

由先序遍历和中序遍历序列可唯一还原出二叉树,前提条件是所有节点的关键字无重复. 题目来源:http://hihocoder.com/problemset/problem/1049 代码: 1 #include <iostream> 2 #include <string> 3 4 using namespace std; 5 6 void post_order(string pre, string in) 7 { 8 size_t len = pre.length(); 9 if(l

已知二叉树的中序遍历和先序/后序遍历求后序/先序

已知两种遍历序列求原始二叉树 算法思想: 需要明确的前提条件 通过先序和中序可以求出原始二叉树 通过中序和后序可以求出原始二叉树 但是通过先序和后序无法还原出二叉树 换种说法: 只有通过先序中序或者后序中序才可以确定一个二叉树 先来看一个例子,已知先序遍历序列和中序遍历序列求后序遍历: 先序:ABCDEFGH 中序:BDCEAFHG 求后序: 分析:要求后序遍历序列,必须求出原始二叉树 先看先序序列A第一个出现,有先序遍历的定义可以知道A是根结点 再看中序遍历,A的左边是BDCE,而A的右边是F

求后序遍历(信息学奥赛一本通 1339)

假设有棵树,长下面这个样子,它的前序遍历,中序遍历,后续遍历都很容易知道. PreOrder: GDAFEMHZ InOrder: ADEFGHMZ PostOrder: AEFDHZMG 现在,假设仅仅知道前序和中序遍历,如何求后序遍历呢?比如,已知一棵树的前序遍历是"GDAFEMHZ",而中序遍历是"ADEFGHMZ"应该如何求后续遍历? 第一步,root最简单,前序遍历的第一节点G就是root. 第二步,继续观察前序遍历GDAFEMHZ,除了知道G是root,

1086. Tree Traversals Again (25)【二叉树】——PAT (Advanced Level) Practise

题目信息 1086. Tree Traversals Again (25) 时间限制200 ms 内存限制65536 kB 代码长度限制16000 B An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to

PAT A1086 Tree Traversals Again [二叉树前序中序求后序]

题目描述 链接 用栈的形式给出一棵二叉树的建立的顺序,求这棵二叉树的后序遍历 分析 性质:树的先序等于入栈次序,树的中序遍历等于出栈次序 先序:先访问根再入栈,所以入栈次序就是先序遍历次序 中序:先递归访问左子树,回溯时访问根,回溯时即出栈时,所以出栈次序就是中序遍历 所以问题转换为已知先序中序,求后序 已知先序中序求后序的方法 \(root\) 保存先序中根的位置,\(st\),\(ed\) 为中序子树的起始结束位置 遍历中序,找到中序根的位置\(i\),从而分成左右子树 左子树在先序中根的位

PAT Advanced 1086 Tree Traversals Again (25) [树的遍历]

题目 An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); po