线程池技术之:ThreadPoolExecutor 源码解析

  java中的所说的线程池,一般都是围绕着 ThreadPoolExecutor 来展开的。其他的实现基本都是基于它,或者模仿它的。所以只要理解 ThreadPoolExecutor, 就相当于完全理解了线程池的精髓。

  其实要理解一个东西,一般地,我们最好是要抱着自己的疑问或者理解去的。否则,往往收获甚微。

  理解 ThreadPoolExecutor, 我们可以先理解一个线程池的意义: 本质上是提供预先定义好的n个线程,供调用方直接运行任务的一个工具。

线程池解决的问题:

  1. 提高任务执行的响应速度,降低资源消耗。任务执行时,直接立即使用线程池提供的线程运行,避免了临时创建线程的CPU/内存开销,达到快速响应的效果。

  2. 提高线程的可管理性。线程总数可预知,避免用户主动创建无限多线程导致死机风险,还可以进行线程统一的分配、调优和监控。

  3. 避免对资源的过度使用。在超出预期的请求任务情况,响应策略可控。

线程池提供的核心接口:

  要想使用线程池,自然是要理解其接口的。一般我们使用 ExecotorService 进行线程池的调用。然而,我们并不针对初学者。

  整体的接口如下:

  我们就挑几个常用接口探讨下:

    submit(Runnable task): 提交一个无需返回结果的任务。
    submit(Callable<T> task): 提交一个有返回结果的任务。
    invokeAll(Collection<? extends Callable<T>> tasks, long, TimeUnit): 同时执行n个任务并返回结果列表。
    shutdown(): 关闭线程程池。
    awaitTermination(long timeout, TimeUnit unit): 等待关闭结果,最长不超过timeout时间。

以上是ThreadPoolExector 提供的特性,针对以上特性。

我们应该要有自己的几个实现思路或疑问:

  1. 线程池如何接受任务?

  2. 线程如何运行任务?

  3. 线程池如何关闭?

接下来,就让我们带着疑问去看实现吧。

ThreadPoolExecutor 核心实现原理

1. 线程池的处理流程

  我们首先重点要看的是,如何执行提交的任务。我可以通过下图来看看。

  总结描述下就是:

    1. 判断核心线程池是否已满,如果不是,则创建线程执行任务
    2. 如果核心线程池满了,判断队列是否满了,如果队列没满,将任务放在队列中
    3. 如果队列满了,则判断线程池是否已满,如果没满,创建线程执行任务
    4. 如果线程池也满了,则按照拒绝策略对任务进行处理

  另外,我们来看一下 ThreadPoolExecutor 的构造方法,因为这里会体现出每个属性的含义。

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

  从构造方法可以看出 ThreadPoolExecutor 的主要参数 7 个,在其注释上也有说明功能,咱们翻译下每个参数的功能:

    corePoolSize: 线程池核心线程数(平时保留的线程数),使用时机: 在初始时刻,每次请求进来都会创建一个线程直到达到该size
    maximumPoolSize: 线程池最大线程数,使用时机: 当workQueue都放不下时,启动新线程,直到最大线程数,此时到达线程池的极限
    keepAliveTime/unit: 超出corePoolSize数量的线程的保留时间,unit为时间单位
    workQueue: 阻塞队列,当核心线程数达到或者超出后,会先尝试将任务放入该队列由各线程自行消费;
        ArrayBlockingQueue: 构造函数一定要传大小
        LinkedBlockingQueue: 构造函数不传大小会默认为65536(Integer.MAX_VALUE ),当大量请求任务时,容易造成 内存耗尽。
        SynchronousQueue: 同步队列,一个没有存储空间的阻塞队列 ,将任务同步交付给工作线程。
        PriorityBlockingQueue: 优先队列
    threadFactory:线程工厂,用于线程需要创建时,调用其newThread()生产新线程使用
    handler: 饱和策略,当队列已放不下任务,且创建的线程已达到 maximum 后,则不能再处理任务,直接将任务交给饱和策略
        AbortPolicy: 直接抛弃(默认)
        CallerRunsPolicy: 用调用者的线程执行任务
        DiscardOldestPolicy: 抛弃队列中最久的任务
        DiscardPolicy: 抛弃当前任务

2. submit 流程详解

  当调用 submit 方法,就是向线程池中提交一个任务,处理流程如步骤1所示。但是我们需要更深入理解。

  submit 方法是定义在 AbstractExecutorService 中,最终调用 ThreadPoolExecutor 的 execute 方法,即是模板方法模式的应用。

    // java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable, T)
    /**
     * @throws RejectedExecutionException {@inheritDoc}
     * @throws NullPointerException       {@inheritDoc}
     */
    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        // 封装任务和返回结果为 RunnableFuture, 统一交由具体的子类执行
        RunnableFuture<T> ftask = newTaskFor(task, result);
        // execute 将会调用 ThreadPoolExecutor 的实现,是我们讨论的重要核心
        execute(ftask);
        return ftask;
    }
    // FutureTask 是个重要的线程池组件,它承载了具体的任务执行流
    /**
     * Returns a {@code RunnableFuture} for the given runnable and default
     * value.
     *
     * @param runnable the runnable task being wrapped
     * @param value the default value for the returned future
     * @param <T> the type of the given value
     * @return a {@code RunnableFuture} which, when run, will run the
     * underlying runnable and which, as a {@code Future}, will yield
     * the given value as its result and provide for cancellation of
     * the underlying task
     * @since 1.6
     */
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }

    // ThreadPoolExecutor 的任务提交过程
    // java.util.concurrent.ThreadPoolExecutor#execute
    /**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn‘t, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        // ctl 是一个重要的控制全局状态的数据结构,定义为一个线程安全的 AtomicInteger
        // ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        int c = ctl.get();
        // 当还没有达到核心线程池的数量时,直接添加1个新线程,然后让其执行任务即可
        if (workerCountOf(c) < corePoolSize) {
            // 2.1. 添加新线程,且执行command任务
            // 添加成功,即不需要后续操作了,添加失败,则说明外部环境变化了
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 当核心线程达到后,则尝试添加到阻塞队列中,具体添加方法由阻塞队列实现
        // isRunning => c < SHUTDOWN;
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            // 2.2. 添加队列成功后,还要再次检测线程池的运行状态,决定启动线程或者状态过期
            // 2.2.1. 当线程池已关闭,则将刚刚添加的任务移除,走reject策略
            if (! isRunning(recheck) && remove(command))
                reject(command);
            // 2.2.2. 当一个worker都没有时,则添加worker
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 当队列满后,则直接再创建新的线程运行,如果不能再创建线程了,则 reject
        else if (!addWorker(command, false))
            // 2.3. 拒绝策略处理
            reject(command);
    }

  通过上面这一小段代码,我们就已经完整地看到了。通过一个 ctl 变量进行全局状态控制,从而保证了线程安全性。整个框架并没有使用锁,但是却是线程安全的。

  整段代码刚好完整描述了线程池的执行流程:

    1. 判断核心线程池是否已满,如果不是,则创建线程执行任务;
    2. 如果核心线程池满了,判断队列是否满了,如果队列没满,将任务放在队列中;
    3. 如果队列满了,则判断线程池是否已满,如果没满,创建线程执行任务;
    4. 如果线程池也满了,则按照拒绝策略对任务进行处理;

2.1. 添加新的worker

  一个worker,即是一个工作线程。

    /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        // 为确保线程安全,进行CAS反复重试
        retry:
        for (;;) {
            int c = ctl.get();
            // 获取runState , c 的高位存储
            // c & ~CAPACITY;
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            // 已经shutdown, firstTask 为空的添加并不会成功
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                // 如果超出最大允许创建的线程数,则直接失败
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                // CAS 更新worker+1数,成功则说明占位成功退出retry,后续的添加操作将是安全的,失败则说明已有其他线程变更该值
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                // runState 变更,则退出到 retry 重新循环
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
        // 以下为添加 worker 过程
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 使用 Worker 封闭 firstTask 任务,后续运行将由 Worker 接管
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                // 添加 worker 的过程,需要保证线程安全
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    // SHUTDOWN 情况下还是会创建 Worker, 但是后续检测将会失败
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        // 既然是新添加的线程,就不应该是 alive 状态
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        // workers 只是一个工作线程的容器,使用 HashSet 承载
                        // private final HashSet<Worker> workers = new HashSet<Worker>();
                        workers.add(w);
                        int s = workers.size();
                        // 维护一个全局达到过的最大线程数计数器
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                // worker 添加成功后,进行将worker启起来,里面应该是有一个 死循环,一直在获取任务
                // 不然怎么运行添加到队列里的任务呢?
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            // 如果任务启动失败,则必须进行清理,返回失败
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
    // 大概添加 worker 的框架明白了,重点对象是 Worker, 我们稍后再讲
    // 现在先来看看,添加失败的情况,如何进行
    /**
     * Rolls back the worker thread creation.
     * - removes worker from workers, if present
     * - decrements worker count
     * - rechecks for termination, in case the existence of this
     *   worker was holding up termination
     */
    private void addWorkerFailed(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (w != null)
                workers.remove(w);
            // ctl 中的 workerCount - 1 , CAS 实现
            decrementWorkerCount();
            // 尝试处理空闲线程
            tryTerminate();
        } finally {
            mainLock.unlock();
        }
    }
    /**
     * Decrements the workerCount field of ctl. This is called only on
     * abrupt termination of a thread (see processWorkerExit). Other
     * decrements are performed within getTask.
     */
    private void decrementWorkerCount() {
        do {} while (! compareAndDecrementWorkerCount(ctl.get()));
    }
    // 停止可能启动的 worker
    /**
     * Transitions to TERMINATED state if either (SHUTDOWN and pool
     * and queue empty) or (STOP and pool empty).  If otherwise
     * eligible to terminate but workerCount is nonzero, interrupts an
     * idle worker to ensure that shutdown signals propagate. This
     * method must be called following any action that might make
     * termination possible -- reducing worker count or removing tasks
     * from the queue during shutdown. The method is non-private to
     * allow access from ScheduledThreadPoolExecutor.
     */
    final void tryTerminate() {
        for (;;) {
            int c = ctl.get();
            // 线程池正在运行、正在清理、已关闭但队列还未处理完,都不会进行 terminate 操作
            if (isRunning(c) ||
                // c >= TIDYING
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            if (workerCountOf(c) != 0) { // Eligible to terminate
                // 停止线程的两个方式之一,只中断一个 worker
                interruptIdleWorkers(ONLY_ONE);
                return;
            }
            // 以下为整个线程池的后置操作
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // 设置正在清理标识
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                        // 线程池已终止的钩子方法,默认实现为空
                        terminated();
                    } finally {
                        ctl.set(ctlOf(TERMINATED, 0));
                        // 此处 termination 为唤醒等待关闭的线程
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }
    /**
     * Interrupts threads that might be waiting for tasks (as
     * indicated by not being locked) so they can check for
     * termination or configuration changes. Ignores
     * SecurityExceptions (in which case some threads may remain
     * uninterrupted).
     *
     * @param onlyOne If true, interrupt at most one worker. This is
     * called only from tryTerminate when termination is otherwise
     * enabled but there are still other workers.  In this case, at
     * most one waiting worker is interrupted to propagate shutdown
     * signals in case all threads are currently waiting.
     * Interrupting any arbitrary thread ensures that newly arriving
     * workers since shutdown began will also eventually exit.
     * To guarantee eventual termination, it suffices to always
     * interrupt only one idle worker, but shutdown() interrupts all
     * idle workers so that redundant workers exit promptly, not
     * waiting for a straggler task to finish.
     */
    private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // 迭代所有 worker
            for (Worker w : workers) {
                Thread t = w.thread;
                // 获取到 worker 的锁之后,再进行 interrupt
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                // 只中断一个 worker, 立即返回, 不保证 interrupt 成功
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

2.2. 当添加队列成功后,发现线程池状态变更,需要进行移除队列操作

    /**
     * Removes this task from the executor‘s internal queue if it is
     * present, thus causing it not to be run if it has not already
     * started.
     *
     * <p>This method may be useful as one part of a cancellation
     * scheme.  It may fail to remove tasks that have been converted
     * into other forms before being placed on the internal queue. For
     * example, a task entered using {@code submit} might be
     * converted into a form that maintains {@code Future} status.
     * However, in such cases, method {@link #purge} may be used to
     * remove those Futures that have been cancelled.
     *
     * @param task the task to remove
     * @return {@code true} if the task was removed
     */
    public boolean remove(Runnable task) {
        // 此移除不一定能成功
        boolean removed = workQueue.remove(task);
        // 上面已经看过,它会尝试停止一个 worker 线程
        tryTerminate(); // In case SHUTDOWN and now empty
        return removed;
    }

3. 添加失败进行执行拒绝策略

    /**
     * Invokes the rejected execution handler for the given command.
     * Package-protected for use by ScheduledThreadPoolExecutor.
     */
    final void reject(Runnable command) {
        // 拒绝策略是在构造方法时传入的,默认为 RejectedExecutionHandler
        // 即用户只需实现 rejectedExecution 方法,即可以自定义拒绝策略了
        handler.rejectedExecution(command, this);
    }

4. Worker 的工作机制

  从上面的实现中,我们可以看到,主要是对 Worker 的添加和 workQueue 的添加,所以具体的工作是由谁完成呢?自然就是 Worker 了。

        // Worker 的构造方法,主要是接受一个 task, 可以为 null, 如果非null, 将在不久的将来被执行
        // private final class Worker extends AbstractQueuedSynchronizer implements Runnable
        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            // 将 Worker 自身当作一个 任务,绑定到 worker.thread 中
            // thread 启动时,worker 就启动了
            this.thread = getThreadFactory().newThread(this);
        }
        // Worker 的主要工作实现,通过一个循环扫描实现
        /** Delegates main run loop to outer runWorker  */
        public void run() {
            // 调用 ThreadPoolExecutor 外部实现的 runWorker 方法
            runWorker(this);
        }

    /**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don‘t need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread‘s
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread‘s UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            // 不停地从 workQueue 中获取任务,然后执行,就是这么个逻辑
            // getTask() 会阻塞式获取,所以 Worker 往往不会立即退出
            while (task != null || (task = getTask()) != null) {
                // 执行过程中是不允许并发的,即同时只能一个 task 在运行,此时也不允许进行 interrupt
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                // 检测是否已被线程池是否停止 或者当前 worker 被中断
                // STOP = 1 << COUNT_BITS;
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    // 中断信息传递
                    wt.interrupt();
                try {
                    // 任务开始前 切点,默认为空执行
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        // 直接调用任务的run方法, 具体的返回结果,会被 FutureTask 封装到 某个变量中
                        // 可以参考以前的文章 (FutureTask是怎样获取到异步执行结果的? https://www.cnblogs.com/yougewe/p/11666284.html)
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        // 任务开始后 切点,默认为空执行
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            // 正常退出,有必要的话,可能重新将 Worker 添加进来
            completedAbruptly = false;
        } finally {
            // 处理退出后下一步操作,可能重新添加 Worker
            processWorkerExit(w, completedAbruptly);
        }
    }

    /**
     * Performs cleanup and bookkeeping for a dying worker. Called
     * only from worker threads. Unless completedAbruptly is set,
     * assumes that workerCount has already been adjusted to account
     * for exit.  This method removes thread from worker set, and
     * possibly terminates the pool or replaces the worker if either
     * it exited due to user task exception or if fewer than
     * corePoolSize workers are running or queue is non-empty but
     * there are no workers.
     *
     * @param w the worker
     * @param completedAbruptly if the worker died due to user exception
     */
    private void processWorkerExit(Worker w, boolean completedAbruptly) {
        if (completedAbruptly) // If abrupt, then workerCount wasn‘t adjusted
            decrementWorkerCount();

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }

        tryTerminate();

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {
            // 在 Worker 正常退出的情况下,检查是否超时导致,维持最小线程数
            if (!completedAbruptly) {
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                // 如果满足最小线程要求,则直接返回
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
            // 否则再添加一个Worker到线程池中备用
            // 非正常退出,会直接再添加一个Worker
            addWorker(null, false);
        }
    }

    /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            // 如果进行了 shutdown, 且队列为空, 则需要将 worker 退出
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                // do {} while (! compareAndDecrementWorkerCount(ctl.get()));
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            // 线程数据大于最大允许线程,需要删除多余的 Worker
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                // 如果开户了超时删除功能,则使用 poll, 否则使用 take() 进行阻塞获取
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                // 获取到任务,则可以进行执行了
                if (r != null)
                    return r;
                // 如果有超时设置,则会在下一循环时退出
                timedOut = true;
            }
            // 忽略中断异常
            // 在这种情况下,Worker如何响应外部的中断请求呢??? 思考
            catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

  所以,Worker的作用就体现出来了,一个循环取任务执行任务过程:

    1. 有一个主循环一直进行任务的获取;
    2. 针对有超时的设置,会使用poll进行获取任务,如果超时,则 Worker 将会退出循环结束线程;
    3. 无超时的设置,则会使用 take 进行阻塞式获取,直到有值;
    4. 获取任务执行前置+业务+后置任务;
    5. 当获取到null的任务之后,当前Worker将会结束;
    6. 当前Worker结束后,将会判断是否有必要维护最低Worker数,从而决定是否再添加Worker进来。

  还是借用一个网上同学比较通用的一个图来表述下 Worker/ThreadPoolExecutor 的工作流程吧(已经很完美,不需要再造这轮子了)

5. shutdown 操作实现

  ThreadPoolExecutor 是通过 ctl 这个变量进行全局状态维护的,shutdown 在线程池中也是表现为一个状态,所以应该是比较简单的。

    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     *
     * <p>This method does not wait for previously submitted tasks to
     * complete execution.  Use {@link #awaitTermination awaitTermination}
     * to do that.
     *
     * @throws SecurityException {@inheritDoc}
     */
    public void shutdown() {
        // 为保证线程安全,使用 mainLock
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // SecurityManager 检查
            checkShutdownAccess();
            // 设置状态为 SHUTDOWN
            advanceRunState(SHUTDOWN);
            // 中断空闲的 Worker, 即相当于依次关闭每个空闲线程
            interruptIdleWorkers();
            // 关闭钩子,默认实现为空操作,为方便子类实现自定义清理功能
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        // 再
        tryTerminate();
    }
    /**
     * Transitions runState to given target, or leaves it alone if
     * already at least the given target.
     *
     * @param targetState the desired state, either SHUTDOWN or STOP
     *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
     */
    private void advanceRunState(int targetState) {
        for (;;) {
            int c = ctl.get();
            // 自身CAS更新成功或者被其他线程更新成功
            if (runStateAtLeast(c, targetState) ||
                ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                break;
        }
    }
    // 关闭空闲线程(非 running 状态)
    /**
     * Common form of interruptIdleWorkers, to avoid having to
     * remember what the boolean argument means.
     */
    private void interruptIdleWorkers() {
        // 上文已介绍, 此处 ONLY_ONE 为 false, 即是最大可能地中断所有 Worker
        interruptIdleWorkers(false);
    }

    与 shutdown 对应的,有一个 shutdownNow, 其语义是 立即停止所有任务。
    /**
     * Attempts to stop all actively executing tasks, halts the
     * processing of waiting tasks, and returns a list of the tasks
     * that were awaiting execution. These tasks are drained (removed)
     * from the task queue upon return from this method.
     *
     * <p>This method does not wait for actively executing tasks to
     * terminate.  Use {@link #awaitTermination awaitTermination} to
     * do that.
     *
     * <p>There are no guarantees beyond best-effort attempts to stop
     * processing actively executing tasks.  This implementation
     * cancels tasks via {@link Thread#interrupt}, so any task that
     * fails to respond to interrupts may never terminate.
     *
     * @throws SecurityException {@inheritDoc}
     */
    public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            // 与 shutdown 的差别,设置的状态不一样
            advanceRunState(STOP);
            // 强行中断线程
            interruptWorkers();
            // 将未完成的任务返回
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }

    /**
     * Interrupts all threads, even if active. Ignores SecurityExceptions
     * (in which case some threads may remain uninterrupted).
     */
    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                // 调用 worker 的提供的中断方法
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }
        // ThreadPoolExecutor.Worker#interruptIfStarted
        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    // 直接调用任务的 interrupt
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }

6. invokeAll 的实现方式

  invokeAll, 望文生义,即是调用所有给定的任务。想来应该是一个个地添加任务到线程池队列吧。

    // invokeAll 的方法直接在抽象方便中就实现了,它的语义是同时执行n个任务,并同步等待结果返回
    // java.util.concurrent.AbstractExecutorService#invokeAll(java.util.Collection<? extends java.util.concurrent.Callable<T>>)
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException {
        if (tasks == null)
            throw new NullPointerException();
        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
        boolean done = false;
        try {
            for (Callable<T> t : tasks) {
                RunnableFuture<T> f = newTaskFor(t);
                futures.add(f);
                // 依次调用各子类的实现,添加任务
                execute(f);
            }
            for (int i = 0, size = futures.size(); i < size; i++) {
                Future<T> f = futures.get(i);
                if (!f.isDone()) {
                    try {
                        // 依次等待执行结果
                        f.get();
                    } catch (CancellationException ignore) {
                    } catch (ExecutionException ignore) {
                    }
                }
            }
            done = true;
            return futures;
        } finally {
            if (!done)
                for (int i = 0, size = futures.size(); i < size; i++)
                    futures.get(i).cancel(true);
        }
    }

  实现很简单,都是些外围调用。

7. ThreadPoolExecutor 的状态值的设计

  通过上面的过程,可以看到,整个ThreadPoolExecutor 非状态的依赖是非常强的。所以一个好的状态值的设计就显得很重要了,runState 代表线程池或者 Worker 的运行状态。如下:

    // runState is stored in the high-order bits
    // 整个状态使值使用 ctl 的高三位值进行控制, COUNT_BITS=29
    // 1110 0000 0000 0000
    private static final int RUNNING    = -1 << COUNT_BITS;
    // 0000 0000 0000 0000
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // 0010 0000 0000 0000
    private static final int STOP       =  1 << COUNT_BITS;
    // 0100 0000 0000 0000
    private static final int TIDYING    =  2 << COUNT_BITS;
    // 0110 0000 0000 0000
    private static final int TERMINATED =  3 << COUNT_BITS;
    // 整个状态值的大小顺序主: RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED

    // 而低 29位,则用来保存 worker 的数量,当worker增加时,只要将整个 ctl 增加即可。
    // 0001 1111 1111 1111, 即是最大的 worker 数量
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // 整个 ctl 描述为一个 AtomicInteger, 功能如下:
    /**
     * The main pool control state, ctl, is an atomic integer packing
     * two conceptual fields
     *   workerCount, indicating the effective number of threads
     *   runState,    indicating whether running, shutting down etc
     *
     * In order to pack them into one int, we limit workerCount to
     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
     * billion) otherwise representable. If this is ever an issue in
     * the future, the variable can be changed to be an AtomicLong,
     * and the shift/mask constants below adjusted. But until the need
     * arises, this code is a bit faster and simpler using an int.
     *
     * The workerCount is the number of workers that have been
     * permitted to start and not permitted to stop.  The value may be
     * transiently different from the actual number of live threads,
     * for example when a ThreadFactory fails to create a thread when
     * asked, and when exiting threads are still performing
     * bookkeeping before terminating. The user-visible pool size is
     * reported as the current size of the workers set.
     *
     * The runState provides the main lifecycle control, taking on values:
     *
     *   RUNNING:  Accept new tasks and process queued tasks
     *   SHUTDOWN: Don‘t accept new tasks, but process queued tasks
     *   STOP:     Don‘t accept new tasks, don‘t process queued tasks,
     *             and interrupt in-progress tasks
     *   TIDYING:  All tasks have terminated, workerCount is zero,
     *             the thread transitioning to state TIDYING
     *             will run the terminated() hook method
     *   TERMINATED: terminated() has completed
     *
     * The numerical order among these values matters, to allow
     * ordered comparisons. The runState monotonically increases over
     * time, but need not hit each state. The transitions are:
     *
     * RUNNING -> SHUTDOWN
     *    On invocation of shutdown(), perhaps implicitly in finalize()
     * (RUNNING or SHUTDOWN) -> STOP
     *    On invocation of shutdownNow()
     * SHUTDOWN -> TIDYING
     *    When both queue and pool are empty
     * STOP -> TIDYING
     *    When pool is empty
     * TIDYING -> TERMINATED
     *    When the terminated() hook method has completed
     *
     * Threads waiting in awaitTermination() will return when the
     * state reaches TERMINATED.
     *
     * Detecting the transition from SHUTDOWN to TIDYING is less
     * straightforward than you‘d like because the queue may become
     * empty after non-empty and vice versa during SHUTDOWN state, but
     * we can only terminate if, after seeing that it is empty, we see
     * that workerCount is 0 (which sometimes entails a recheck -- see
     * below).
     */
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

8. awaitTermination 等待关闭完成

  从上面的 shutdown, 可以看到,只是写了 SHUTDOWN 标识后,尝试尽可能地中断停止Worker线程,但并不保证中断成功。要想保证停止完成,需要有另外的机制来保证。从 awaitTermination 的语义来说,它是能保证任务停止完成的,那么它是如何保证的呢?

    // ThreadPoolExecutor.awaitTermination()
    public boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (;;) {
                // 只是循环 ctl 状态, 只要 状态为 TERMINATED 状态,则说明已经关闭成功
                // 此处 termination 的状态触发是在 tryTerminate 中触发的
                if (runStateAtLeast(ctl.get(), TERMINATED))
                    return true;
                if (nanos <= 0)
                    return false;
                nanos = termination.awaitNanos(nanos);
            }
        } finally {
            mainLock.unlock();
        }
    }
    

  看起来, awaitTermination 并没有什么特殊操作,而是一直在等待。所以 TERMINATED 是 Worker 自行发生的动作。

  那是在哪里做的操作呢?其实是在获取任务的时候,会检测当前状态是否是 SHUTDOWN, 如果是SHUTDOWN且 队列为空,则会触发获取任务的返回null.从而结束当前 Worker.

  Worker 在结束前会调用 processWorkerExit() 方法,里面会再次调用 tryTerminate(), 当所有 Worker 都运行到这个点后, awaitTermination() 就会收到通知了。(注意: processWorkerExit() 会在每次运行后进行 addWorker() 尝试,但是在 SHUTDOWN 状态的添加操作总是失败的,所以不用考虑)

  到此,你是否可以解答前面的几个问题了呢?

  

原文地址:https://www.cnblogs.com/yougewe/p/12267274.html

时间: 2024-10-04 19:50:10

线程池技术之:ThreadPoolExecutor 源码解析的相关文章

【Java并发编程】21、线程池ThreadPoolExecutor源码解析

一.前言 JUC这部分还有线程池这一块没有分析,需要抓紧时间分析,下面开始ThreadPoolExecutor,其是线程池的基础,分析完了这个类会简化之后的分析,线程池可以解决两个不同问题:由于减少了每个任务调用的开销,它们通常可以在执行大量异步任务时提供增强的性能,并且还可以提供绑定和管理资源(包括执行任务集时使用的线程)的方法.下面开始分析. 二.ThreadPoolExecutor数据结构 在ThreadPoolExecutor的内部,主要由BlockingQueue和AbstractQu

线程池之ThreadPoolExecutor源码解析

1.变量 ThreadPoolExecutor先定义了这几个常量,初看时一脸懵逼,其实它就是用int的二进制高三位来表示线程池的状态, 先回顾一下位运算: <<’左移:右边空出的位置补0,其值相当于乘以2. ‘>>’右移:左边空出的位,如果是正数则补0,若为负数则补0或1,取决于所用的计算机系统OS X中补1.其值相当于除以2. 负数二进制由它的绝对值取反后加1 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RU

ThreadPoolExecutor源码解析

java doc中的解释是: An ExecutorService that executes each submitted task using one of possibly several pooled threads, normally configured using Executors factory methods. 一个使用线程池来执行提交的任务的ExecutorService子类,正常通过Executors工具类中的工厂方法进行配置. 那我们就先看一下比较熟悉的Executor

Java 1.7 ThreadPoolExecutor源码解析

相比1.6,1.7有些变化: 1.        增加了一个TIDYING状态,这个状态是介于STOP和TERMINATED之间的,如果执行完terminated钩子函数后状态就变成TERMINATED了: 2.        内部类Worker继承了AQS类作为一个独享锁,在运行每个任务前会获取自己的锁: 3.        runState和poolSize两个字段被合并成一个原子字段ctl了,不再使用mainLock保护了. 原文转载:http://blog.csdn.net/yuenki

Java ThreadPoolExecutor源码解析之Execute流程

execute方法示意图如上,workers为HashSet类型,存储初始化任务RUNNING或SHUTDOWN但firsttask为null的worker. workQueue为BlockingQueue,存储提交的执行任务. 原文地址:https://www.cnblogs.com/codegod/p/9062789.html

第十四章 Executors源码解析

前边两章介绍了基础线程池ThreadPoolExecutor的使用方式.工作机理.参数详细介绍以及核心源码解析. 具体的介绍请参照: 第十二章 ThreadPoolExecutor使用与工作机理 第十三章 ThreadPoolExecutor源码解析 1.Executors与ThreadPoolExecutor ThreadPoolExecutor 可以灵活的自定义的创建线程池,可定制性很高 想创建好一个合适的线程池比较难 使用稍微麻烦一些 实际中很少使用 Executors 可以创建4种线程池

Java源码解析 - ThreadPoolExecutor 线程池

1 线程池的好处 线程使应用能够更加充分合理地协调利用CPU.内存.网络.I/O等系统资源.线程的创建需要开辟虚拟机栈.本地方法栈.程序计数器等线程私有的内存空间;在线程销毁时需要回收这些系统资源.频繁地创建和销毁线程会浪费大量的系统资源,增加并发编程风险. 在服务器负载过大的时候,如何让新的线程等待或者友好地拒绝服务? 这些都是线程自身无法解决的;所以需要通过线程池协调多个线程,并实现类似主次线程隔离.定时执行.周期执行等任务. 线程池的作用包括:●利用线程池管理并复用线程.控制最大并发数等●

JDK 源码解析 —— Executors ExecutorService ThreadPoolExecutor 线程池

零. 简介 Executors 是 Executor.ExecutorService.ThreadFactory.Callable 类的工厂和工具方法. 一. 源码解析 创建一个固定大小的线程池:通过重用共享无界队列里的线程来减少线程创建的开销.当所有的线程都在执行任务,新增的任务将会在队列中等待,直到一个线程空闲.由于在执行前失败导致的线程中断,如果需要继续执行接下去的任务,新的线程会取代它执行.线程池中的线程会一直存在,除非明确地 shutdown 掉. public static Exec

含源码解析,深入Java 线程池原理

从池化技术到底层实现,一篇文章带你贯通线程池技术. 1.池化技术简介 在系统开发过程中,我们经常会用到池化技术来减少系统消耗,提升系统性能. 在编程领域,比较典型的池化技术有: 线程池.连接池.内存池.对象池等. 对象池通过复用对象来减少创建对象.垃圾回收的开销:连接池(数据库连接池.Redis连接池和HTTP连接池等)通过复用TCP连接来减少创建和释放连接的时间.线程池通过复用线程提升性能.简单来说,池化技术就是通过复用来提升性能. 线程.内存.数据库的连接对象都是资源,在程序中,当你创建一个