洛谷P1040 加分二叉树

P1040 加分二叉树

题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每 个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的 加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1:

5
5 7 1 2 10

输出样例#1:

145
3 1 2 4 5

【题解】
序列上的区间dp。
dp[i][j]表示区间(i,j)这棵子树的最大加分
dp[i][j] = max{dp[i][k - 1], dp[k + 1][j]} + value[k]
记录方案:根k即可
注意边界i == k 或 j == k

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cmath>
 6 #include <algorithm>
 7 #define min(a, b) ((a) < (b) ? (a) : (b))
 8 #define max(a, b) ((a) > (b) ? (a) : (b))
 9
10 inline void read(long long &x)
11 {
12     x = 0;char ch = getchar(), c = ch;
13     while(ch < ‘0‘ || ch > ‘9‘)c = ch, ch = getchar();
14     while(ch <= ‘9‘ && ch >= ‘0‘)x = x * 10 + ch - ‘0‘, ch = getchar();
15     if(c == ‘-‘)x = -x;
16 }
17
18 const long long INF = 0x3f3f3f3f;
19 const long long MAXN = 30 + 5;
20
21 long long n, dp[MAXN][MAXN], value[MAXN], root[MAXN][MAXN];
22
23 void dfs(int l, int r)
24 {
25     if(l > r)return;
26     int ro = root[l][r];
27     printf("%d ", ro);
28     dfs(l, ro - 1);
29     dfs(ro + 1, r);
30 }
31
32 int main()
33 {
34     read(n);
35     for(register int i = 1;i <= n;++ i)
36         read(value[i]), dp[i][i] = value[i], root[i][i] = i;
37     for(register int i = 2;i <= n;++ i)
38     {
39         for(register int l = 1;l <= n - i + 1;++ l)
40         {
41             int r = l + i - 1;
42             for(register int k = l;k <= r;++ k)
43             {
44                 int tmp = max(dp[l][k - 1], 1) * max(dp[k + 1][r], 1) + value[k];
45                 if(dp[l][r] < tmp)
46                 {
47                     dp[l][r] = tmp;
48                     root[l][r] = k;
49                 }
50             }
51         }
52     }
53     printf("%d\n", dp[1][n]);
54     dfs(1, n);
55     return 0;
56 }

洛谷P1040

时间: 2024-10-06 00:08:46

洛谷P1040 加分二叉树的相关文章

[NOIP2003] 提高组 洛谷P1040 加分二叉树

题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数. 若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数.不考虑它的空子树. 试求一棵符合中序遍历为(1,2,3,…,n)且

洛谷 P1040 加分二叉树

题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数. 若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数.不考虑它的空子树. 试求一棵符合中序遍历为(1,2,3,…,n)且

【洛谷】P1040 加分二叉树

[洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数. 若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数.不考虑它的空子树. 试求一棵符合中

P1040 加分二叉树

转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,…,n),其中数字 1,2,3,…,n 为节点编号.每个节点都有一个分数(均为正整数),记第 i 个节点的分数为 di, tree 及它的每个子树都有一个加分,任一棵子树 subtree(也包含 tree 本身)的加分计算方法如下: subtree 的左子树的加分 × subtree

洛谷 P1305 新二叉树 Label:字符串的输出总是有惊喜

题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输出格式: 前序排列的完全二叉树 输入输出样例 输入样例#1: 6 abc bdi cj* d** i** j** 输出样例#1: abdicj 代码 1 #include<iostream> 2 #include<cstring> 3 #include<algorithm> 4 #include

P1040 加分二叉树(树上记忆化搜素)

这道题很水 但我没做出来……………………………… 我写的时候状态设计错了,设计dp[l][m][r]为从l到r以m为根的值 这样写遍历状态就是n^3的,会TLE. 而且写路径的时候是用结构体写的,这样会错,应该用root[l][r]表示从l到r的根 对于l到r,枚举根在哪就好了 总结 (1)状态设计,学会简洁的设计状态 (2)路径输出,可以开和dp数组一样的数组,在dp数组更新的时候路径数组也更新 (3)在非线性结构上做dp的时候(如树),用记忆化搜索会比递推方便. #include<bits/

NOIP-2003 加分二叉树

题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数. 若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数.不考虑它的空子树. 试求一棵符合中序遍历为(1,2,3,-,n)且

洛谷OJ P1032 字串变换 解题报告

洛谷OJ P1032 字串变换 解题报告 by MedalPluS   [题目描述] 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd' B$='xyz' 变换规则为: ‘abc’->‘xu’ ‘ud’->‘y’ ‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为:

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3