/*
*最近点对的问题
*/
#include
#include
#include
using namespace std;
const int SIZE = 100005;
const int L = -1;
const int R = 1;
typedef struct
{
int index;
double x;
double y; /用于记录坐标点/
}coord;
coord num[SIZE], c[SIZE]/用作辅助数组/;
double getDistance(coord &bi1, coord &bi2) /求得两点之间的距离/
{
return sqrt(pow(bi1.x - bi2.x, 2.0) + pow(bi1.y - bi2.y, 2.0));
}
bool cmpx(coord &bi1, coord &bi2)
{
if (bi1.x == bi1.x)
return bi1.y < bi2.y;
else
return bi1.x < bi2.x;
}
bool cmpy(coord &bi1, coord &bi2)
{
if (bi1.y == bi2.y)
return bi1.x < bi2.x;
else
return bi1.y < bi2.y;
}
inline double min(double &bi1, double &bi2, double &bi3)
{
double minLength;
minLength = bi1 > bi2 ? bi2 : bi1;
minLength = minLength > bi3 ? bi3 : minLength;
return minLength;
}
inline double minDist(double &bi1, double &bi2)
{
if (bi1 > bi2)
return bi2;
return bi1;
}
double divide_conquer(int low, int high) /分治法求最小距离/
{
double dis;
int count = high - low;
if (count == 0)
{
return 0;
}
else if (count == 1) /两个数/
{
dis = getDistance(num[low], num[high]);
}
else if (count == 2) /三个数/
{
double temp1, temp2, temp3;
temp1 = getDistance(num[low], num[low + 1]);
temp2 = getDistance(num[low + 1], num[high]);
temp3 = getDistance(num[low], num[high]);
dis = min(temp1, temp2, temp3);
}
else /大于三个数的情况/
{
double leftmin, rightmin, min;
int mid = (low + high) / 2;
int p = 0;
int i, j;
leftmin = divide_conquer(low, mid); /*求得左边部分的最小值*/
rightmin = divide_conquer(mid + 1, high); /*求得右边部分的最小值*/
dis = minDist(leftmin, rightmin);
/*下面从所有坐标点中找出所有x在leftCoord到rightCoord之间的点*/
for (i = low; i <= mid; i++)
{
double leftCoord = num[mid].x - dis;
if (num[i].x >= leftCoord)
{
c[p].index = L; /*标识属于左边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
for ( ; i <= high; i++)
{
double rightCoord = num[mid].x + dis;
if (num[i].x <= rightCoord)
{
c[p].index = R; /*标识属于右边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
sort(c, c + p, cmpy); /*找到的点再从小到大按照y排序一次*/
for (i = 0; i < p; i++)
{
/*错误出现在这里,上面我是只搜索了左边,并且只计算了7个y值比c[i].y大的点到c[i]的距离,
可是实际上y值比c[i].y小的点也有可能与c[i]取得最小值,所以说上面的程序有错误。真正正确
的解答如下,那就是要搜索所有的点,并计算7个y值比c[i].y大的点到c[i]的距离,由于距离是两个
点之间产生的,一个点的y值比另一个点小,那么必然有另一个点的y值比一个点的大,由于这种关系,
从而保证了搜索出来的是最小的距离!
*/
for (j = 1; (j <= 7) && (i + j < p); j++)
{
if (c[i].index != c[i + j].index) /最小值只可能出现在两个分别属于不同的边的点上/
{
min = getDistance(c[i], c[i + j]);
if(min < dis)
dis = min;
}
}
}
}
return dis;
}
int main ()
{
int n;
while (cin >> n && n != 0)
{
double result = 0;
for (int i = 0; i < n; i++)
{
num[i].index = 0;
cin >> num[i].x >> num[i].y;
}
sort (num, num + n, cmpx);
result = divide_conquer(0, n - 1);
printf("%.2lf\n", result / 2);
}
//system ("pause");
return 0;
}