相似性度量(距离及相似系数)

在分类聚类算法中,时常需要计算两个变量(通常是向量的形式)的距离,即相似性度量。其中,距离度量的性质:非负性,自反性,对称性和三角不等式。

  本文的目的就是对常用的相似性度量作一个总结。

本文目录:

1.欧氏距离

2.曼哈顿距离

3. 切比雪夫距离

4. 闵可夫斯基距离

5.标准化欧氏距离

6.马氏距离

7.余弦相似度

8.汉明距离

9.杰卡德距离& 杰卡德相似系数

10.皮尔逊相关系数

11.相关系数& 相关距离

12.信息熵

1. 欧氏距离(Euclidean Distance)

欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。相当于高维空间内向量所表示的点到点之间的距离。

(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:

(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

  也可以用表示成向量运算的形式:

(4)Matlab计算欧氏距离

Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。

例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X,‘euclidean‘)

结果:

D=

1.0000   2.0000    2.2361

由于特征向量的各分量的量纲不一致,通常需要先对各分量进行标准化,使其与单位无关,比如对身高(cm)和体重(kg)两个单位不同的指标使用欧式距离可能使结果失效。

优点:简单,应用广泛(如果也算一个优点的话)

缺点:没有考虑分量之间的相关性,体现单一特征的多个分量会干扰结果。

2. 曼哈顿距离(Manhattan Distance)

从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,
曼哈顿距离也称为城市街区距离(City Block Distance)

(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

(2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离

(3)Matlab计算曼哈顿距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X, ‘cityblock‘)

结果:

D=

1    2     3

3. 切比雪夫距离 ( Chebyshev Distance )

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max(| x2-x1 | , | y2-y1 | ) 步。有一种类似的一种距离度量方法叫切比雪夫距离。

(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

(2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的切比雪夫距离

  这个公式的另一种等价形式是

看不出两个公式是等价的?提示一下:试试用放缩法和夹逼法则来证明。

(3)Matlab计算切比雪夫距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的切比雪夫距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X, ‘chebychev‘)

结果:

D=

1    2     2

4. 闵可夫斯基距离(Minkowski Distance)

闵氏距离不是一种距离,而是一组距离的定义。

(1)闵氏距离的定义

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

根据变参数的不同,闵氏距离可以表示一类的距离。

(2)闵氏距离的缺点

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

简单说来,闵氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

(3)Matlab计算闵氏距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的闵氏距离(以变参数为2的欧氏距离为例)

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X,‘minkowski‘,2)

结果:

D=

1.0000   2.0000    2.2361

5. 标准化欧氏距离(Standardized Euclidean Distance )

(1)标准欧氏距离的定义

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standarddeviation)为s,那么X的“标准化变量”表示为:

  而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:

  标准化后的值 =  ( 标准化前的值  - 分量的均值 ) /分量的标准差

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)

(2)Matlab计算标准化欧氏距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的标准化欧氏距离 (假设两个分量的标准差分别为0.5和1)

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X, ‘seuclidean‘,[0.5,1])

结果:

D=

2.0000   2.0000    2.8284

6. 马氏距离(Mahalanobis Distance)

(1)马氏距离定义

有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

 

而其中向量Xi与Xj之间的马氏距离定义为:

若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

也就是欧氏距离了。

  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

(2)适用场合:

1、度量两个服从同一分布并且其协方差矩阵为C的随机变量X与Y的差异程度

2、度量X与某一类的均值向量的差异程度,判别样本的归属。此时,Y为类均值向量.

(3)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。缺点:不同的特征不能差别对待,可能夸大弱特征。

(4)Matlab计算(1 2),( 1 3),( 2 2),( 3 1)两两之间的马氏距离

X = [1 2; 1 3; 2 2; 3 1]

Y = pdist(X,‘mahalanobis‘)

结果:

Y=

2.3452   2.0000    2.3452    1.2247   2.4495    1.2247

7. 余弦相似度(Cosine Similarity)

就是两个向量之间的夹角的余弦值。余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。相比距离度量,余弦相似度更加注重两个向量在方向上的差异,而非距离或长度上。此外,也有调整的余弦相似度(Adjusted Cosine Similarity)。

优点:不受坐标轴旋转,放大缩小的影响。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2)两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

夹角余弦的具体应用可以参阅参考文献[1]。

(3)Matlab计算夹角余弦

例子:计算(1,0)、( 1,1.732)、(-1,0)两两间的夹角余弦

X= [1 0 ; 1 1.732 ; -1 0]

D= 1- pdist(X, ‘cosine‘)  % Matlab中的pdist(X,‘cosine‘)得到的是1减夹角余弦的值

结果:

D=

0.5000  -1.0000   -0.5000

8. 汉明距离(Hamming Distance)

(1)汉明距离的定义

在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。换句话说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数。例如字符串“1111”与“1001”之间的汉明距离为2。

应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

(2)Matlab计算汉明距离

  Matlab中2个向量之间的汉明距离的定义为2个向量不同的分量所占的百分比。

例子:计算向量(0,0)、(1,0)、(0,2)两两间的汉明距离

X = [0 0 ; 1 0 ; 0 2];

D = PDIST(X, ‘hamming‘)

结果:

D=

0.5000   0.5000    1.0000

9. 杰卡德相似系数(Jaccard Similarity Coefficient)

Jaccard系数主要用于计算符号度量或布尔值度量的个体间的相似度,因为个体的特征属性都是由符号度量或者布尔值标识,因此无法衡量差异具体值 的大小,只能获得“是否相同”这个结果,所以Jaccard系数只关心个体间共同具有的特征是否一致这个问题。

(1) 杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。

(2) 杰卡德距离

与杰卡德相似系数相反的概念是杰卡德距离(Jaccard Distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3)杰卡德相似系数与杰卡德距离的应用

可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

p:样本A与B都是1的维度的个数

q:样本A是1,样本B是0的维度的个数

r:样本A是0,样本B是1的维度的个数

s:样本A与B都是0的维度的个数

那么样本A与B的杰卡德相似系数可以表示为:

这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

而样本A与B的杰卡德距离表示为:

(4)Matlab计算杰卡德距离

Matlab的pdist函数定义的杰卡德距离跟我这里的定义有一些差别,Matlab中将其定义为不同的维度的个数占“非全零维度”的比例。

例子:计算(1,1,0)、(1,-1,0)、(-1,1,0)两两之间的杰卡德距离

X= [1 1 0; 1 -1 0; -1 1 0]

D= pdist( X , ‘jaccard‘)

结果

D=

0.5000    0.5000   1.0000

10. 皮尔逊相关系数(Pearson Correlation Coefficient)

即相关分析中的相关系数r,分别对X和Y基于自身总体标准化后计算空间向量的余弦夹角。公式如下:

11. 相关系数( Correlation Coefficient )与相关距离(Correlation Distance)

(1)相关系数的定义

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

(2)相关距离的定义

(3)Matlab计算(1, 2 ,3 ,4 )与( 3 ,8 ,7 ,6 )之间的相关系数与相关距离

X = [1 2 3 4 ; 3 8 7 6]

C = corrcoef( X‘ )   %将返回相关系数矩阵

D = pdist( X , ‘correlation‘)

结果:

C=

1.0000   0.4781

0.4781   1.0000

D=

0.5219

其中0.4781就是相关系数,0.5219是相关距离。

12. 信息熵(Information Entropy)

信息熵并不属于一种相似性度量。那为什么放在这篇文章中啊?这个。。。我也不知道。 (╯▽╰)

信息熵是衡量分布的混乱程度或分散程度的一种度量。分布越分散(或者说分布越平均),信息熵就越大。分布越有序(或者说分布越集中),信息熵就越小。

计算给定的样本集X的信息熵的公式:

参数的含义:

n:样本集X的分类数

pi:X中第i类元素出现的概率

信息熵越大表明样本集S分类越分散,信息熵越小则表明样本集X分类越集中。。当S中n个分类出现的概率一样大时(都是1/n),信息熵取最大值log2(n)。当X只有一个分类时,信息熵取最小值0

参考资料: 

[1]吴军. 数学之美 系列 12 -余弦定理和新闻的分类.

http://www.google.com.hk/ggblog/googlechinablog/2006/07/12_4010.html

[2]Wikipedia. Jaccard index.

http://en.wikipedia.org/wiki/Jaccard_index

[3]Wikipedia. Hamming distance

http://en.wikipedia.org/wiki/Hamming_distance

[4] 求马氏距离(Mahalanobisdistance )matlab版

http://junjun0595.blog.163.com/blog/static/969561420100633351210/

[5] Pearson product-momentcorrelation coefficient

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

时间: 2024-11-03 22:27:06

相似性度量(距离及相似系数)的相关文章

欧几里德距离和皮尔逊相关系数计算方法

欧几里德距离是推荐算法中比较简单的一种,他计算两个用户之间的相似程度其计算方法为,以豆瓣电影为例假设用户A对电影 f1....fn的评价分数分别为 r1....rn用户B对电影 f1....fn的评价分数分别为s1.....sn暂且假设A和B都对这些电影评价过那么用户A和B的欧几里德距离计算方法为先计算A和B的对所有同一部电影的评分的差值的平方和 sum = pow(r1-s1,2)+pow(r2-s2,2)+....+pow(rn-sn,2);然后对sim取平方根值sim = sqrt(sum

机器学习笔记——皮尔逊相关系数

在学到相关性度量的时候,有一个系数用来度量相似性(距离),这个系数叫做皮尔逊系数,事实上在统计学的时候就已经学过了,仅仅是当时不知道还能用到机器学习中来,这更加让我认为机器学习离不开统计学了. 皮尔逊相关系数--Pearson correlation coefficient,用于度量两个变量之间的相关性,其值介于-1与1之间,值越大则说明相关性越强. 两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商: 因为μX = E(X), σX2 = E[(X ? E(X))2] = E(

Jaccard相关系数和Tanimoto系数

Jaccard相关系数用来衡量两个集合的相关性,数值越大,相似度就越高.相对于Jaccard系数,Jaccard距离是用来衡量两个样本集合的差异性的. Jaccard相关系数: Jaccard距离: 如果A,B集合中元素的取值为二值数(0,或者1,0代表此元素不在这个集合中,1代表此元素在这个集合中)那么Jaccard相关系数和Jaccard距离也可以这样求: M11代表A,B集合中相同位置同为1的个数 M01 代表A集合中相同位置元素为0,而B集合为1的个数 M10代表A集合中相同位置元素为1

相似图片搜索原理三(颜色直方图—c++实现)

图像的颜色直方图可以用于图像检索,适应有相同色彩,并且可以有平移.缩放.旋转不变性的图像检索,当然了这三大特点不如sift或者surf稳定性强,此外最大的局限就是如果形状内容一样,但色彩不一,结果是搜不到的.不过它在某些情况下达到较好的结果. 颜色直方图两种计算方式: 彩色图像的颜色直方图,这里可以有两种处理方式,得到的效果应该差不多. 首先第一种就是对像素的每个通道都进行划分,每个通道的最大像素值为255,可以等分8.16或者64等分,这样每个通道的范围就是0~15(以16等分为例,当然等分越

计算机视觉目标跟踪的算法分类

摘自百度百科............. (1)基于区域的跟踪算法 基于区域的跟踪算法基本思想是:将目标初始所在区域的图像块作为目标模板,将目标模板与候选图像中所有可能的位置进行相关匹配,匹配度最高的地方即为目标所在的位置.最常用的相关匹配准则是差的平方和准则,(Sum of Square Difference,SSD). 起初,基于区域的跟踪算法中所用到的目标模板是固定的,如 Lucas 等人提出 Lucas-Kanade 方法,该方法利用灰度图像的空间梯度信息寻找最佳匹配区域,确定目标位置.之

模式识别之相似度计量---常用相似度计量方法

常用相似性度量(距离 相似系数) 在分类聚类算法,推荐系统中,常要用到两个输入变量(通常是特征向量的形式)距离的计算,即相似性度量.不同相似性度量对于算法的结果,有些时候,差异很大.因此,有必要根据输入数据的特征,选择一种合适的相似性度量方法. 令X=(x1,x2,..,xn)T,Y=(y1,y2,...yn)T为两个输入向量, 1.欧几里得距离(Euclidean distance) ‍ 相当于高维空间内向量说表示的点到点之间的距离.由于特征向量的各分量的量纲不一致,通常需要先对各分量进行标准

图像处理URL

随笔分类 - 图像处理/图像增强等 图像增强: 图像复原: 图像重建: 图像分割: 图像特效: 图像匹配: 图像形态学处理: 图像几何处理: 图像正交变换: 人工智能: 跟踪: 图像处理之增强---图像模糊检测 摘要: 这种检测可以做宽动态的检测,也可应用稳像算法我们实现了拉普拉斯方差算法,该算法提供给我们一个浮点数来代表具体图像的"模糊度".该算法快速,简单且易于使用--用拉普拉斯算子与输入图像做卷积然后计算方差即可.如果方差低于预定义阈值,图像就被标记为"模糊"

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.特征压缩(或称数据降维).SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性. 1.1奇异值分解的几何意义(因公式输入比较麻烦

Direct3D 光照和材质

  今天我们来学习下Direct3D里面的光源和材质. 四大光照类型: 环境光 Ambient Light 一个物体没有被光照直接照射,通过每一些物体反射的光线到达这个物体,它也有可能被看到.这种称为环境光 漫反射光 Diffuse Light 这种类型光沿着特定的方向传播,当达到某一个表面,它会向四周方向均匀反射(重点考虑反射光的空间位置和方向) 镜面反射光 Specular Light 当此类光到达一个表面时,严格地沿着一个方向反射. 自发光 Emissive Light 自发光就是对象自己