转自:http://www.fx114.net/qa-81-151600.aspx
一些杂琐的东西,记录一下,以后可能会用得上,另外以后遇到可以记录的可以追加在这里
查找进程内最耗费CPU的线程:
ps -Lfp pid #列出进程内所有线程 -L threads -f 所有full -p by process id ps -mp pid -o THREAD,tid,time
top -Hp pid #找出进程内最耗CPU线程ID printf "%x\n" tid #线程ID转成16进制 jstak pid | grep tid #找到最耗费CPU的线程
jmap导出java进程内存情况并用jhat分析
jmap -dump:format=b,file=/tmp/dump.dat 21711 jhat -J-Xmx512m -port 9998 /tmp/dump.dat
storm相关进程启动命令:
nohup ./storm nimbus >/dev/null 2>&1 & nohup ./storm supervisor >/dev/null 2>&1 & nohup ./storm ui >/dev/null 2>&1 & nohup ./storm logviewer >/dev/null 2>&1 &
jstorm相关进程启动命令:
nohup $JSTORM_HOME/bin/jstorm nimbus >/dev/null 2>&1 & nohup $JSTORM_HOME/bin/jstorm supervisor >/dev/null 2>&1 &
storm杀进程命令:
kill `ps aux | egrep ‘(daemon\.nimbus)|(storm\.ui\.core)‘ | fgrep -v egrep | awk ‘{print $2}‘` kill `ps aux | fgrep storm | fgrep -v ‘fgrep‘ | awk ‘{print $2}‘`
hive相关进程启动命令:
nohup ./hive --service hiveserver2 > hiveserver2.log 2>&1 & nohup ./hive --service metastore > metastore.log 2>&1 & nohup ./hive --service hwi > hwi.log 2>&1 &
找出目录包含指定字符串的文件列表:
find . -type f -name "*.sh" -exec grep -nH "xxxxxx" {} \;
linux清理内存:
sync && echo 3 > /proc/sys/vm/drop_caches
列出文件中包含指定字符串的行的前后指定行:
grep -n -A 10 -B 10 "xxxx" file
tcpdump抓包实例:
tcpdump -i eth1 -XvvS -s 0 tcp port 10020 tcpdump -S -nn -vvv -i eth1 port 10020
spark任务提交实例:
./spark-submit --deploy-mode cluster --master spark://10.49.133.77:6066 --jars hdfs://10.49.133.77:9000/spark/guava-14.0.1.jar --class spark.itil.video.ItilData hdfs://10.49.133.77:9000/spark/sparktest2-0.0.1-jar-with-dependencies.jar --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:-UseGCOverheadLimit"
spark启动worker实例:
./spark-daemon.sh start org.apache.spark.deploy.worker.Worker 1 --webui-port 8081 --port 8092 spark://100.65.32.215:8070,100.65.32.212:8070
spark sql操作实例:
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/data/webitil/hive/lib/mysql-connector-java-5.0.8-bin.jar SPARK_CLASSPATH=$SPARK_CLASSPATH:/data/webitil/hive/lib/mysql-connector-java-5.0.8-bin.jar ./spark-sql --master spark://10.49.133.77:8070 ./spark-sql --master spark://10.49.133.77:8070 --jars /data/webitil/hive/lib/mysql-connector-java-5.0.8-bin.jar ./spark-shell --jars /data/webitil/hive/lib/mysql-connector-java-5.0.8-bin.jar ./spark-shell --packages com.databricks:spark-csv_2.11:1.4.0 ADD_JARS=../elasticsearch-hadoop-2.1.0.Beta1/dist/elasticsearch-spark_2.10-2.1.0.Beta1.jar ./bin/spark-shell
./spark-shell import org.apache.spark.sql.SQLContext val sqlContext = new SQLContext(sc) import sqlContext.implicits._ val url = "jdbc:mysql://10.198.30.118:3311/logplatform" val table = " (select * from t_log_stat limit 5) as tb1" val reader = sqlContext.read.format("jdbc") reader.option("url", url) reader.option("dbtable", table) reader.option("driver", "com.mysql.jdbc.Driver") reader.option("user", "logplat_w") reader.option("password", "rm5Bey6x") val df = reader.load() df.show()
mvn安装自己的jar包到本地mvn库实例:
mvn install:install-file -DgroupId=com.tencent.omg.itil.net -DartifactId=IpServiceJNI -Dversion=1.0 -Dpackaging=jar -Dfile=d:\storm\IpServiceJNI-1.0.jar
时间: 2024-10-14 11:55:53