四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)

什么是最短路径问题?

简单来讲,就是用于计算一个节点到其他所有节点的最短路径。

单源最短路算法:已知起点,求到达其他点的最短路径。

常用算法:Dijkstra算法、Bellman-ford算法、SPFA算法

多源最短路算法:求任意两点之间的最短路径。

常用算法:floyd算法

单源最短路径——Dijkstra

Dijkstra算法是经典的最短路径算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

时间复杂度:O(n^2)

处理问题:单源、无负权、有向图、无向图最短路径

不能使用的情况:边中含有负权值(无法判断)

#define INF 0x3f3f3f3f

int e[Max][Max];//e[i][j]代表从i->j的距离,不通设为无穷大
int dis[Max];//dis[i]代表从起点到i的最短距离
bool book[Max];//book[i]代表点i是否在S中
int n;//n个顶点
int s;//起点

void Dijkstra()
{
    for(int i=1;i<=n;i++)//初始化dis数组
        dis[i]=e[s][i];

    for(int i=1;i<=n;i++)//初始化book数组
        book[i]=0;
    dis[s]=0;
    book[s]=1;

    for(int i=1;i<=n-1;i++)//Dijkstra算法核心语句
    {
        int minDis=INF;
        int k;//找到与s最近的顶点k
        for(int j=1;j<=n;j++)
        {
            if(book[j]==0 && dis[j]<minDis)
            {
                minDis=dis[j];
                k=j;
            }
        }
        book[k]=1;

        for(int j=1;j<=n;j++)//“松弛”过程
        {
            if(e[k][j]<INF)
            {
                if(dis[j]>dis[k]+e[k][j])
                    dis[j]=dis[k]+e[k][j];
            }
        }
    }
}

基本思想:把带权图中所有的点分为两部分S∪U,S为已经求出从起点到该点的最短路径的点集合,U中为未确定最短路径的点集合。把U中的点一个一个加入到S中,最后求出全部最短路径。

如何把U中的点加入S中呢?

①初始时,S只包含源点s,即S={s},dis[s]=0。U包含除v外的其他顶点,即U={其余顶点},若s与U中顶点u有边,则dis[u]=e[s][u],否则,dis[u]=∞。

②从U中找到一个与源点s距离最小(min(dis[]))的顶点k,把k加入S中,dis[k]确定(仔细想想,s与k最短路径必定是dis[k]=e[s][k],找不到更短的)。

③以k为新考虑的中间点,修改源点s到U中各顶点的距离dis[]:若从源点s到顶点u的距离(dis[k]+e[k][u],经过顶点k)比原来距离(dis[u],不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。(这一过程称为“松弛”)

④重复步骤②和③直到所有顶点都包含在S中。

算法优化:这里面每次都要寻找距离最短的那个点和距离,时间复杂度为O(n),可以用“堆”来优化,是时间复杂度降为O(lgn)。

算法过程详解:http://ahalei.blog.51cto.com/4767671/1387799

单源最短路径——Bellman-ford算法

求单源最短路径,可以判断有无负权回路(若有,则不存在最短路), 时效性较好,时间复杂度O(VE)。

处理问题:单源、可有负权、有向图、无向图最短路径

注:下面代码为有向图最短路径

#define INF 0x3f3f3f3f

struct Edge{
    int u;//起
    int v;//终
    int weight;//长度
};

Edge edge[maxm];//用来存储所有的边
int dis[maxn];//dis[i]表示源点到i的最短距离
int n,m;//n个点,m条边
int s;//源点

bool Bellmen_ford()
{
    for(int i=1;i<=n;i++)//初始化
        dis[i]=INF;

    dis[s]=0;//源节点到自己的距离为0

    for(int i=1;i<n;i++)//松弛过程,计算最短路径
    {
        for(int j=1;j<=m;j++)
        {
            if(dis[edge[j].v]>dis[edge[j].u]+edge[j].weight)//比较s->v与s->u->v大小
                dis[edge[j].v]=dis[edge[j].u]+edge[j].weight;
        }
    }

    for(int j=1;j<=m;j++)//判断是否有负边权的边
    {
        if(dis[edge[j].v]>dis[edge[j].u]+edge[j].weight)
            return false;
    }

    return true;
}

基本思想:bellman-ford的思想和dijkstra很像,其关键点都在于不断地对边进行松弛。而最大的区别就在于前者能作用于负边权的情况。其实现思路是在求出最短路径后,判断此刻是否还能对便进行松弛,如果还能进行松弛,便说明还有负边权的边。

单源最短路径——SPFA算法

上一种算法其实不好用,复杂度太高,SPFA算法是Bellman-ford算法的队列优化,比较常用。SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA算法在一类网格图中的表现不尽如人意。不是很稳定,不如Dijkstra。

处理问题:单源、可有负权、有向图、无向图最短路径(自身其实无法处理负权)

#define INF 0x3f3f3f3f

int dis[MAX];//dis[i]表示起点到i的最短距离
bool vis[MAX];//是否访问过点i
int e[MAX][MAX];//矩阵

int n,m;//点和边的数量
int s;//源点

void SPFA()
{
    for(int i=1;i<=n;i++)//初始化
    {
        dis[i]=INF;
        vis[i]=false;
    }
    queue<int> q;
    q.push(s);
    dis[s]=0;
    vis[s]=true;

    while(!q.empty())
    {
        int cur=q.front();
        q.pop();
        vis[cur]=false;
        for(int i=1;i<=n;i++)
        {
            if(e[cur][i]!=INF&&dis[i]>=dis[cur]+e[cur][i])
            {
                dis[i]=dis[cur]+e[cur][i];
                if(!vis[i])
                {
                    vis[i]=true;
                    q.push(i);
                }
            }
        }
    }
}

算法思想:

设立一个队列用来保存待优化的点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

算法过程详解:http://www.360doc.com/content/13/1208/22/14357424_335569176.shtml

例题:http://ac.jobdu.com/problem.php?pid=1008

多源最短路径——Floyd算法

Floyd算法是一种利用动态规划思想的计算加权图中多源点之间最短路径的算法。可以正确处理有向图或负权的最短路径问题。

时间复杂度:O(N^3)

空间复杂度:O(N^2)

处理问题:多源、可有负权、有向图、无向图最短路径

int e[Max][Max];//e[i][j]代表从i->j的距离,不通设为无穷大
int n;//n个顶点
//Floyd算法
void Floyd()
{
    for(int k=1;k<=n;k++)//遍历所有的中间点
    {
        for(int i=1;i<=n;i++)//遍历所有的起点
        {
            for(int j=1;j<=n;j++)//遍历所有的终点
            {
                if (e[i][j]>e[i][k]+e[k][j])//如果当前i->j的距离大于i->k->j的距离之和
                    e[i][j]=e[i][k]+e[k][j];//更新从i->j的最短路径
            }
        }
    }
}

算法思想:

①如果不允许有中转点,那么最短路径就是我们的e[][]原始矩阵;

②现在只允许经过1号顶点进行中转,判断e[i][1]+e[1][j]是否比e[i][j]要小,修改e[][];

③接下来只允许经过1和2号顶点进行中转……

④最后,允许经过1~n号所有顶点进行中转,得到最后的e[][],就是要求的任意两点之间的最短路程。

这里面是动态规划思想的体现。状态转移方程:e[i,j]=max{e[i,k]+e[k,j],e[i,j]};

算法过程:对于每一对顶点 i 和 j,看看是否存在一个顶点 k 使得从 i 到 k 再到 j 比已知的路径更短。如果是,则更新它。

算法过程详解:http://ahalei.blog.51cto.com/4767671/1383613

本文参考(含大量例题):http://blog.csdn.net/hjd_love_zzt/article/details/26739593

作者: AlvinZH

出处: http://www.cnblogs.com/AlvinZH/

本文版权归作者AlvinZH和博客园所有,欢迎转载和商用,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

时间: 2024-10-10 06:27:56

四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)的相关文章

Bellman - Ford 算法解决最短路径问题

Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运

Floyd算法解决最短路径问题

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的中午,A和B在吃过中饭之后,来到了一个新的鬼屋!鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路.由于没有肚子的压迫,A和B决定好好的逛一逛这个鬼屋,逛着逛着,A产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢? 输入 每个测试点(输入文件)有且仅有一组测试数据. 在一组测试数据中: 第1行为2个整数N

算法_最短路径

一.概述  定义:在一幅加权有向图中,从顶点s到顶点t的最短路径是所有从s到t的路径中的权重的最小者.从定义可以看出单点最短路径的实现是建立在加权有向图的基础上的. 最短路径树:给定一幅加权有向图和一个顶点s,以s为起点的一颗最短路径树是图的一幅子图,它包含s和从s可达的所有顶点.这颗有向树的根节点是s,树的每条路径都是有向图中的一条最短路径.它包含了顶点s到所有可达的顶点的最短路径. 二.加权有向图和加权有向边的数据结构 加权有向图和加权有向边的数据结构和加权无向图无向边的数据结构类型基本相同

Bellman—Ford算法思想

---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段: (1)初始化:将除源点外的所有顶点

图的单源最短路径:Dijkstra算法实现

本文介绍的是图的非负权值的单源最短路径问题.问题的提出是,对于有权图D,t提供源点v,要找到从v到其他所有点的最短路径,即单源最短路径问题,在本文中,解决这一问题,是普遍比较熟悉的Dijkstra算法. 算法核心思想参见维基.简而言之,设集合S存放已经求出了最短路径的点.初始状态S中只有一个点v0,之后每求得v0到vn的最短路径,就会更新v0到所有vn邻接的点的一致的最短路径(不一定是最终的最短路径),如此重复,每次会确定v0到一个点的最短路径,确定好的点加入S中,直至所有点进入S结束.在本文中

算法导论——最短路径Dijkstra算法

package org.loda.graph; import org.loda.structure.IndexMinQ; import org.loda.structure.Stack; import org.loda.util.In; /** * * @ClassName: Dijkstra * @Description: Dijkstra最短路径算法--贪心算法 * @author minjun * @date 2015年5月27日 下午4:49:27 * */ public class D

ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可以求得一点到任意一点经过一条边的最短路,遍历两次可以求得一点到任意一点经过两条边的最短路...如 此反复,当遍历m次所有边后,则可以求得一点到任意一点经过m条边后的最短路(有点类似离散数学中邻接矩阵的连通性判定) POJ1556-The Doors 初学就先看POJ2240吧 题意:求从(0,5)到

最短路径之Dijkstra算法

Dijkstra算法: 首先,引进一个辅助向量D,它的每个分量D[i]表示当前所找到的从始点v到每个终点vi的的长度:如D[3]=2表示从始点v到终点3的路径相对最小长度为2.这里强调相对就是说在算法过程中D的值是在不断逼近最终结果但在过程中不一定就等于长度.它的初始状态为:若从v到vi有弧,则D为弧上的权值:否则置D为∞.显然,长度为 D[j]=Min{D | vi∈V} 的路径就是从v出发的长度最短的一条.此路径为(v,vj). 那么,下一条长度次短的是哪一条呢?假设该次短路径的终点是vk,

_DataStructure_C_Impl:Dijkstra算法求最短路径

// _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<string.h> typedef char VertexType[4]; typedef char InfoPtr; typedef int VRType; #define INFINITY 100000 //定义一个无限大的值 #define MaxSize 50 //最大顶点个数 typedef int P