Rotate
Time Limit: 2000/1000 MS (Java/Others) Memory Limit:
65536/65536 K (Java/Others)
Special Judge
Problem Description
Noting is more interesting than rotation!
Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi.
Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π).
Of course, you should be able to figure out what is A and P :).
Input
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p.
We promise that the sum of all p‘s is differed at least 0.1 from the nearest multiplier of 2π.
T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π.
Output
For each test case, print 3 real numbers x, y, p, indicating that the overall rotation is around (x, y) counter-clockwisely by a radian of p. Note that you should print p where 0<=p<2π.
Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5.
Sample Input
1 3 0 0 1 1 1 1 2 2 1
Sample Output
1.8088715944 0.1911284056 3.0000000000
Source
2014 ACM/ICPC Asia Regional Anshan
Online
比赛时写这个题写了几个小时,最终也没有调出来,自己还是太弱了。
题意:一个物体每次绕着一个点旋转一个角度,旋转n次后等价于从开始状态绕一个点旋转一定角度后直接到达最终状态。求这个点的坐标和旋转角度。
分析:因为旋转次数很少,所以可以直接模拟旋转过程。选两个点作为开始状态,求出这两个点旋转后对应的坐标,然后连接旋转前和旋转后的对应点,求出两条直线的交点,然后求出旋转角度。
#include<cstdio> #include<cmath> using namespace std; #define PI acos(-1.0) struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {} }; int n; Point p[15]; //旋转点 double rad[15]; //旋转角度 typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; } //点积 double Length(Vector A) { return sqrt(Dot(A, A)); } //求向量的模 double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } //求两个向量的夹角 double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } //叉乘 Vector Rotate(Vector A, double rad) { //向量旋转 return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); } Vector Normal(Vector A) { //求A向量的法向量 double L = Length(A); return Vector(-A.y / L, A.x / L); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { //求直线交点 Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } Vector Rotate_Point(Vector A) { for(int i = 0; i < n; i++) { A = p[i] + Rotate(A - p[i], rad[i]); //转化为向量旋转 } return A; } Vector Get_Mid_Point(Point A, Point B) { //求中点 return Vector((A.x + B.x) / 2, (A.y + B.y) / 2); } void Get_Ans() { Point f1[2], f2[2], mid[2], vec[2]; f1[0].x = -1; f1[0].y = -1; f1[1].x = -10; f1[1].y = -50; for(int i = 0; i < 2; i++) { f2[i] = Rotate_Point(f1[i]); mid[i] = Get_Mid_Point(f1[i], f2[i]); vec[i] = Normal(f1[i] - f2[i]); } Point ans = GetLineIntersection(mid[0], vec[0], mid[1], vec[1]); double ansp = Angle(f1[0] - ans, f2[0] - ans); if(Cross(f1[0] - ans, f2[0] - ans) < 0) ansp = 2 * PI - ansp; if(dcmp(ans.x) == 0) ans.x = 0; if(dcmp(ans.y) == 0) ans.y = 0; printf("%.10lf %.10lf %.10lf\n", ans.x, ans.y, ansp); } int main() { int T; scanf("%d", &T); while(T--) { scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%lf%lf%lf", &p[i].x, &p[i].y, &rad[i]); if(dcmp(rad[i] - 2 * PI) == 0 || dcmp(rad[i]) == 0) { rad[i] = 0; n--; i--; } } Get_Ans(); } return 0; }