POJ1061(线性同余方程)

青蛙的约会

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 105587   Accepted: 20789

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4
#include <iostream>
using namespace std;
typedef __int64 LL;//int前双‘_‘
LL extgcd(LL a,LL b,LL &x,LL &y)
{
    LL d=a;
    if(b!=0)
    {
        d=extgcd(b,a%b,y,x);
        y-=(a/b*x);
    }
    else
    {
        x=1;y=0;
    }
    return d;
}
LL gcd(LL a,LL b)
{
    if(b==0)    return a;
    else    return gcd(b,a%b);
}
LL s1,s2,v1,v2,m;
int main()
{
    while(cin>>s1>>s2>>v1>>v2>>m)
    {
        //两者相遇的条件 s1+v1*t=s2+v2*t-k*m => (v1-v2)*t+m*k=s2-s1
        //得线性同余方程 ax+by=c (a:v1-v2,x:t,b:m,k:y,c:s1-s1)
        LL a=v1-v2;
        if(a<0)    a+=m;
        LL b=m;
        LL c=s2-s1;
        if(c<0)    c+=m;
        LL div=gcd(a,b);
        if(c%div!=0)    //同余方程ax+by=c.有解的充要条件是 c|gcd(a,b).
        {
            cout<<"Impossible"<<endl;
            continue;
        }
        a/=div;//将各个系数均缩小div倍
        b/=div;//ax+by=c => a‘x+b‘y=c‘
        c/=div;
        LL x=0,y=0;
        extgcd(a,b,x,y);//求解线性同余方程 ax+by=1
        x=(x*c)%b;//扩展欧几里得求的是ax+by=1中的x,结果需要将x扩大c倍
        while(x<0)    x+=b;
        cout<<x<<endl;
    }
    return 0;
}
时间: 2024-10-26 15:41:08

POJ1061(线性同余方程)的相关文章

POJ2115 C Looooops【解线性同余方程】

题目链接: http://poj.org/problem?id=2115 题目大意: 对于循环语句: for(int i = A; i != B; i += C) 语句1: 已知i.A.B.C都是k进制的无符号整数类型,给出A.B.C.k的值,计算并输出语句1 的执行次数,如果为无限次,那么直接输出"FOREVER". 思路: 设算法执行X步,那么题目就变为求解A + CX ≡ B( mod M)(M= 2^k).即A + CX + MY ≡ B. CX + MY ≡ B - A(M

POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]

先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/6804137.html) 定理2: 一元线性同余方程ax ≡ n (mod b) 有解,当且仅当gcd(a,b)|n. 也就是说,解出了ax+by=gcd(a,b),就相当于解出了ax≡n(mod b) (而且只要满足gcd(a,b)|n,就一定有解) 定理3: 若gcd(a,b) = 1,则方程ax

青蛙的约会(poj1061+欧几里德+同余方程)

** 青蛙的约会 ** Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 94174 Accepted: 17412 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,

POJ2115 C Looooops(线性同余方程)

无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} $$ 最后就用扩展欧几里得算法求出这个线性同余方程的最小非负整数解. 1 #include<cstdio> 2 #include<cstring> 3 #define mod(x,y) (((x)%(y)+(y))%(y)) 4 #define ll long long 5 ll e

POJ 2115C Looooops[一元线性同余方程]

一元线性同余方程 定义: $a$,$b$是整数,$m$是正整数,形如 $ax\equiv b\,(mod\, m)$ 且$x$是未知数的同余式称作一元线性同余方程. 对于方程$ax\equiv b\,(mod\, m)$, 可以把它写成二元一次不定式$ax+my=b$.要想方程有解,必须满足$(a,m)\mid d$. 这时利用扩展欧几里得求出$ax+my=(a,m)$ 的一个特解,在乘上$b/(a,m)$就是我们所要的一个特解. 利用公式: $ax_0+my_0=d=ax+my\Rightar

codeforces 710D Two Arithmetic Progressions(线性同余方程)

题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多少个X,X满足 x = a1k' + b1 = a2l' + b2. 由此可以发现这两个方程满足线性同余,即 x ≡b1mod(a1) 且 x≡b2mod(a2); 也就是 a1k' + b1 = a2l' + b2a. 所以 a1k1 + (-a2k2) = (b2 - b1),由同余方程得 :

POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转化一下形式. 上式可以用同余方程表示为  a + k*c = (b) % (1<<d)   <-->  k*c = (b-a) % (1<<d)(中间应该是全等号,打不出来…).这就是我们想要的同余方程,根据我的个人习惯,我把它转化为线性方程的形式. -->   c*

poj3708(公式化简+大数进制装换+线性同余方程组)

刚看到这个题目,有点被吓到,毕竟自己这么弱. 分析了很久,然后发现m,k都可以唯一的用d进制表示.也就是用一个ai,和很多个bi唯一构成. 这点就是解题的关键了. 之后可以发现每次调用函数f(x),相当于a(ai),b(bi)了一下.这样根据置换的一定知识,一定会出现循环,而把循环的大小看成取模,把从m->k的看成余,于是可以建立一个线性同余方程. 直接用模板解决之.. Recurrent Function Time Limit: 1000MS   Memory Limit: 65536K To

数论 - n元线性同余方程的解法

note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m           ..................(1) 当然也有很多变形,例如:a1*x1+a2*x2+...+an*xn+m*x(n+1)=b.这两个都是等价的. 判断是否有解: 解线性同余方程,我们首先要来判断方程是否有解,方程有解的充要条件是:d%b==0.其中d=gcd(a1,a2,...an)