同余|欧拉定理|费马小定理|扩展欧拉定理|扩展欧几里得算法

目录

  • 同余

    • 基本定理

      • 欧拉定理
      • 费马小定理
      • 扩展欧拉定理
    • 扩展欧几里得算法

同余

基本定理

欧拉定理

若a,m互质,则
\[
a^{\varphi\left ( m \right )}\equiv 1\left ( mod \ m \right )
\]

应用

,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4,所以。计算:,而。与定理结果相符。

计算的个位数,实际是求被10除的余数。7和10互素,且。由欧拉定理知。所以


费马小定理

若p是质数,则对于任意整数a,都有
\[
a^{p}\equiv a\left ( mod \ p \right )
\]


扩展欧拉定理

\[
a^{b}\ mod \ m,若 b>=\varphi\left ( m \right ),则
\]

\[
a^{b} \equiv a^{b\ mod\ \varphi \left ( m \right )+\varphi\left ( m \right )}\left ( mod \ m \right )
\]


扩展欧几里得算法

搬到另一篇博客:

扩展欧几里得算法By Saitoasuka

原文地址:https://www.cnblogs.com/saitoasuka/p/10335891.html

时间: 2024-08-25 17:24:14

同余|欧拉定理|费马小定理|扩展欧拉定理|扩展欧几里得算法的相关文章

【日常学习】乘法逆元&&欧拉定理&&费马小定理&&欧拉函数应用&&常大学霸

转载请注明出处 [ametake版权所有]http://blog.csdn.net/ametake欢迎来看看 今天花了一个多小时终于把乘法逆元捣鼓明白了 鉴于我拙计的智商抓紧把这些记录下来 在此本栏目鸣谢里奥姑娘和热心网友himdd的帮助和支持 那么正文开始··· 逆元是干什么的呢? 因为(a/b)mod p ≠(a mod p)/(b mod p) 我们需要想一种方法避免高精 那就是把除法转化为乘法 因为(a*b) mod p = ( a mod p ) *( b mod p ) 怎么转化呢?

『基础同余和费马小定理』

同余 同余是数论中一个重要的概念,若整数\(a\)与整数\(b\)除以正整数\(m\)的余数相等,则称\(a\),\(b\)再模\(m\)意义下同余,记为\(a\equiv b(mod\ m)\)或\(m|(a-b)\). 同余基础性质 \(1.\)\(a≡a (mod\ m)\),自反性 \(2.\)若\(a≡b (mod\ m)\),则\(b≡a (mod\ m)\),对称性 \(3.\)若\(a≡b (mod\ m)\),\(b≡c (mod\ m)\),则\(a≡c (mod\ m)\)

欧拉定理 / 费马小定理证明

主要部分转自百度百科:https://baike.baidu.com/item/欧拉定理 内容: 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质.欧拉定理表明,若n,a为正整数,且n,a互质,则: 证明: 将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数) 我们考虑这么一些数: m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n) (1) 这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定m

[知识点]费马小定理和欧拉定理

一.定义 费马小定理是数论中的一个定理:假如a是一个整数,p是一个质数,那么:a ^ p - a是p的倍数,即: 如果a不是p的倍数,还可以表示为: 二.应用 计算2 ^ 100 / 13的余数. 即余数为3. 三.延伸 费马小定理本质上是欧拉定理的一种特例. 欧拉定理:假如n和a为正整数,且互素,则: 其中,ψ(n)为欧拉函数. (欧拉函数:ψ(n)表示小于等于n的正整数中与n互质的数的个数) 在费马小定理的基础上,欧拉定理可以处理模数非质数的情况,比如: 计算7 ^ 222 / 10的余数.

【Lucas定理/费马小定理/中国剩余定理/扩展欧几里得】[BZOJ 1951] 古代猪文

[Description] 求 [Solution] 容易得到, 所以,重点在怎么求 如果是p-1是个质数,我们可以用sqrt(n)的时间枚举所有d,用Lucas定理分别计算求和即可. 但是我们发现p-1=2*3*4679*35617,并不是一个质数,所以Lucas定理不能用了吗?并不,我们可以算出这个合式分别对2.3.4679.35617的模值,写出四个同余方程,再用孙子定理求解即可.注意特判g==p的情况,此时费马小定理不成立,ans=0. [Code] #include<cmath> #

[ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael can control the elements and combine them to invoke a powerful skill. Vance like Kael very much so he changes the map to make Kael more powerful. In

费马小定理&amp;欧拉定理

在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元.那上面的式子变形之后得到a-1≡ap-2(mod p),因此可以通过快速幂求出逆元. 我们先来证明一下费马小定理: 费马小定理证明: 一.准备知识 引理1:剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m) 证明:ac≡b

[ACM] hdu 3923 Invoker (Poyla计数,快速幂运算,扩展欧几里得或费马小定理)

Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael can control the elements and combine them to invoke a powerful skill. Vance like Kael very much so he changes the map to make Kael more powerful. In

「数论基础」欧拉定理(费马小定理)

在阅读本篇之前,如果还不熟悉欧拉函数,可以参见另一篇介绍欧拉函数的「数论基础」欧拉函数. 定义:对于互质的两个正整数$a, n$,满足$a^{φ(n)} ≡ 1\  (mod\ n)$ 证明: 设集合$S$包含所有$n$以内与$n$互质的数,共有$φ(n)$个:     $S = \{ x_1, x_2, ..., x_{φ(n)} \} $ 再设集合$T$: $T = \{ a * x_1 \% n, a * x_2 \% n, ..., a * x_{φ(n)} \% n \} $ 由于$