分布式锁的实现【基于ZooKeeper】

引言

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。

基于ZooKeeper分布式锁的流程

  • 在zookeeper指定节点(locks)下创建临时顺序节点node_n
  • 获取locks下所有子节点children
  • 对子节点按节点自增序号从小到大排序
  • 判断本节点是不是第一个子节点,若是,则获取锁;若不是,则监听比该节点小的那个节点的删除事件
  • 若监听事件生效,则回到第二步重新进行判断,直到获取到锁

具体实现

下面就具体使用java和zookeeper实现分布式锁,操作zookeeper使用的是apache提供的zookeeper的包。

  • 通过实现Watch接口,实现process(WatchedEvent event)方法来实施监控,使CountDownLatch来完成监控,在等待锁的时候使用CountDownLatch来计数,等到后进行countDown,停止等待,继续运行。
  • 以下整体流程基本与上述描述流程一致,只是在监听的时候使用的是CountDownLatch来监听前一个节点。

分布式锁

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

/**
 * Created by liuyang on 2017/4/20.
 */
public class DistributedLock implements Lock, Watcher {
    private ZooKeeper zk = null;
    // 根节点
    private String ROOT_LOCK = "/locks";
    // 竞争的资源
    private String lockName;
    // 等待的前一个锁
    private String WAIT_LOCK;
    // 当前锁
    private String CURRENT_LOCK;
    // 计数器
    private CountDownLatch countDownLatch;
    private int sessionTimeout = 30000;
    private List<Exception> exceptionList = new ArrayList<Exception>();

    /**
     * 配置分布式锁
     * @param config 连接的url
     * @param lockName 竞争资源
     */
    public DistributedLock(String config, String lockName) {
        this.lockName = lockName;
        try {
            // 连接zookeeper
            zk = new ZooKeeper(config, sessionTimeout, this);
            Stat stat = zk.exists(ROOT_LOCK, false);
            if (stat == null) {
                // 如果根节点不存在,则创建根节点
                zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
            }
        } catch (IOException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    // 节点监视器
    public void process(WatchedEvent event) {
        if (this.countDownLatch != null) {
            this.countDownLatch.countDown();
        }
    }

    public void lock() {
        if (exceptionList.size() > 0) {
            throw new LockException(exceptionList.get(0));
        }
        try {
            if (this.tryLock()) {
                System.out.println(Thread.currentThread().getName() + " " + lockName + "获得了锁");
                return;
            } else {
                // 等待锁
                waitForLock(WAIT_LOCK, sessionTimeout);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    public boolean tryLock() {
        try {
            String splitStr = "_lock_";
            if (lockName.contains(splitStr)) {
                throw new LockException("锁名有误");
            }
            // 创建临时有序节点
            CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0],
                    ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
            System.out.println(CURRENT_LOCK + " 已经创建");
            // 取所有子节点
            List<String> subNodes = zk.getChildren(ROOT_LOCK, false);
            // 取出所有lockName的锁
            List<String> lockObjects = new ArrayList<String>();
            for (String node : subNodes) {
                String _node = node.split(splitStr)[0];
                if (_node.equals(lockName)) {
                    lockObjects.add(node);
                }
            }
            Collections.sort(lockObjects);
            System.out.println(Thread.currentThread().getName() + " 的锁是 " + CURRENT_LOCK);
            // 若当前节点为最小节点,则获取锁成功
            if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) {
                return true;
            }

            // 若不是最小节点,则找到自己的前一个节点
            String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1);
            WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
        return false;
    }

    public boolean tryLock(long timeout, TimeUnit unit) {
        try {
            if (this.tryLock()) {
                return true;
            }
            return waitForLock(WAIT_LOCK, timeout);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return false;
    }

    // 等待锁
    private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException {
        Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true);

        if (stat != null) {
            System.out.println(Thread.currentThread().getName() + "等待锁 " + ROOT_LOCK + "/" + prev);
            this.countDownLatch = new CountDownLatch(1);
            // 计数等待,若等到前一个节点消失,则precess中进行countDown,停止等待,获取锁
            this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS);
            this.countDownLatch = null;
            System.out.println(Thread.currentThread().getName() + " 等到了锁");
        }
        return true;
    }

    public void unlock() {
        try {
            System.out.println("释放锁 " + CURRENT_LOCK);
            zk.delete(CURRENT_LOCK, -1);
            CURRENT_LOCK = null;
            zk.close();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    public Condition newCondition() {
        return null;
    }

    public void lockInterruptibly() throws InterruptedException {
        this.lock();
    }

    public class LockException extends RuntimeException {
        private static final long serialVersionUID = 1L;
        public LockException(String e){
            super(e);
        }
        public LockException(Exception e){
            super(e);
        }
    }
}
测试代码
public class Test {
    static int n = 500;

    public static void secskill() {
        System.out.println(--n);
    }

    public static void main(String[] args) {

        Runnable runnable = new Runnable() {
            public void run() {
                DistributedLock lock = null;
                try {
                    lock = new DistributedLock("127.0.0.1:2181", "test1");
                    lock.lock();
                    secskill();
                    System.out.println(Thread.currentThread().getName() + "正在运行");
                } finally {
                    if (lock != null) {
                        lock.unlock();
                    }
                }
            }
        };

        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(runnable);
            t.start();
        }
    }
}

运行结果:

总体来说,如果了解到整个实现流程,使用zookeeper实现分布式锁并不是很困难,不过这也只是一个简单的实现,与前面实现Redis实现相比,本实现的稳定性更强,这是因为zookeeper的特性所致,在外界看来,zookeeper集群中每一个节点都是一致的。

完整代码可以在我的GitHub中查看:https://github.com/hongmoshui/DistributedLock

原文链接:https://www.cnblogs.com/liuyang0/p/6800538.html

原文地址:https://www.cnblogs.com/hongmoshui/p/10599190.html

时间: 2024-10-09 11:18:51

分布式锁的实现【基于ZooKeeper】的相关文章

分布式锁(一) Zookeeper分布式锁

什么是Zookeeper? Zookeeper(业界简称zk)是一种提供配置管理.分布式协同以及命名的中心化服务,这些提供的功能都是分布式系统中非常底层且必不可少的基本功能,但是如果自己实现这些功能而且要达到高吞吐.低延迟同时还要保持一致性和可用性,实际上非常困难.因此zookeeper提供了这些功能,开发者在zookeeper之上构建自己的各种分布式系统. 虽然zookeeper的实现比较复杂,但是它提供的模型抽象却是非常简单的.Zookeeper提供一个多层级的节点命名空间(节点称为znod

分布式锁(2) ----- 基于redis的分布式锁

Redis单机版实现 set和lua实现 获取锁 SET resource_name my_random_value NX PX 30000 NX key不存在时才set PX 设置过期时间 my_random_value 要保证每台客户端的每个锁请求唯一,可以使用UUID+ThreadID 该命令在Redis 2.6.12才有,网上有基于setnx.epire的实现和基于setnx.get.getset的实现,这些多多少少都有点瑕疵,大概率是旧版本的redis实现,建议高版本的redis还是使

[Redis] 基于redis的分布式锁

前言分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁. 可靠性首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁.不会发生死锁.即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁.具有容错性.只要大部分的Redis节点正常运行,客户端就可以加锁和解锁.解铃还须系铃人.加锁和解锁必须

分布式锁三种实现方式(数据库实现,缓存Redis等,Zookeeper)

分布式锁三种实现方式: 1. 基于数据库实现分布式锁: 2. 基于缓存(Redis等)实现分布式锁: 3. 基于Zookeeper实现分布式锁: 一, 基于数据库实现分布式锁 1. 悲观锁 利用select … where … for update 排他锁 注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表.有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题. 2. 乐观锁 所谓乐观锁与前边最大区别在

Redis分布式锁

转自:https://www.cnblogs.com/linjiqin/p/8003838.html 前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现

Redis分布式锁的正确实现方式

前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁. 不会发生死锁.即使有一个客户端在

关于redis实现分布式锁

前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁. 不会发生死锁.即使有一个客户端在

Redis分布式锁的正确实现方式(Java版)

前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁. 不会发生死锁.即使有一个客户端在

分布式&amp;分布式锁&amp;Redis分布式锁

一.什么是分布式分布式的CAP理论告诉我们:任何一个分布式系统都无法同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项.C:一致性,在分布式环境下,一致性是指多个节点同一时刻要有同样的值:A:可用性,服务一直保持可用状态,当用户发出一个请求,服务能在一定时间内返回结果:P:分区容忍性,即使单个组件不可用,操作依然可以完成:目前很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是

分布式锁解决方案

分布式锁解决方案: 1.采用数据库乐观锁(不建议,性能不好,需要jdbc连接) 2.基于Redis实现分布式锁(setnx) 3.基于Zookeeper实现分布式锁.Zookeeper是分布式协调工具,在分布式解决方案中使用. 多个客户端(jvm),同时在zk上面创建相同的一个临时节点,因为临时节点路径是保证唯一,只要谁能够创建节点成功,谁就能拿到锁.没有创建成功的节点(jvm)就会进行等待,当释放锁的时候,采用事件通知给客户端重新获取锁的资源. 解决分布式锁的核心思路:在多台服务器集群的情况下