PyTorch自动微分基本原理

序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据。但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂、高维的方程是不现实的。这就是自动微分出现的原因,当前最流行的深度学习框架如PyTorch、Tensorflow等都提供了自动微分的支持,让人们只需要很少的工作就能神奇般地自动计算出复杂函数的梯度。

PyTorch的autograd简介

Tensor是PyTorch实现多维数组计算和自动微分的关键数据结构。一方面,它类似于numpy的ndarray,用户可以对Tensor进行各种数学运算;另一方面,当设置.requires_grad = True之后,在其上进行的各种操作就会被记录下来,用于后续的梯度计算,其内部实现机制被成为动态计算图(dynamic computation graph)

Variable变量:在PyTorch早期版本中,Tensor只负责多维数组的运算,自动微分的职责是Variable完成的,因此经常可以看到因而产生的包装代码。而在0.4.0版本之后,二者的功能进行了合并,使得自动微分的使用更加简单了。

autograd机制能够记录作用于Tensor上的所有操作,生成一个动态计算图。图的叶子节点是输入的数据,根节点是输出的结果。当在根节点调用.backward()的时候就会从根到叶应用链式法则计算梯度。默认情况下,只有.requires_gradis_leaf两个属性都为True的节点才会被计算导数,并存储到grad中。

动态计算图本质上是一个有向无环图,因此“叶”和“根”的称呼是不太准确的,但是这种简称可以帮助理解,PyTorch的文档中仍然采用这种说法。

requires_grad属性

requires_grad属性默认为False,也就是Tensor变量默认是不需要求导的。如果一个节点的requires_grad是True,那么所有依赖它的节点requires_grad也会是True。换言之,如果一个节点依赖的所有节点都不需要求导,那么它的requires_grad也会是False。在反向传播的过程中,该节点所在的子图会被排除在外。

>>> x = torch.randn(5, 5)  # requires_grad=False by default
>>> y = torch.randn(5, 5)  # requires_grad=False by default
>>> z = torch.randn((5, 5), requires_grad=True)
>>> a = x + y
>>> a.requires_grad
False
>>> b = a + z
>>> b.requires_grad
True

Function

我们已经知道PyTorch使用动态计算图(DAG)记录计算的全过程,那么DAG是怎样建立的呢?一些博客认为DAG的节点是Tensor(或说Variable),这其实是不准确的。DAG的节点是Function对象,边表示数据依赖,从输出指向输入。因此Function类在PyTorch自动微分中位居核心地位,但是用户通常不会直接去使用,导致人们对Function类了解并不多。

每当对Tensor施加一个运算的时候,就会产生一个Function对象,它产生运算的结果,记录运算的发生,并且记录运算的输入。Tensor使用.grad_fn属性记录这个计算图的入口。反向传播过程中,autograd引擎会按照逆序,通过Function的backward依次计算梯度。

backward函数

backward函数是反向传播的入口点,在需要被求导的节点上调用backward函数会计算梯度值到相应的节点上。backward需要一个重要的参数grad_tensor,但如果节点只含有一个标量值,这个参数就可以省略(例如最普遍的loss.backward()loss.backward(torch.tensor(1))等价),否则就会报如下的错误:

Backward should be called only on a scalar (i.e. 1-element tensor) or with gradient w.r.t. the variable

要理解这个参数的内涵首先要从数学角度认识梯度运算。如果有一个向量函数$\vec{y}=f(\vec{x})$,那么$\vec{y}$相对于$\vec{x}$的梯度是一个雅克比矩阵(Jacobian matrix):

$$\begin{split}J=\left(\begin{array}{ccc} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\ \vdots & \ddots & \vdots\\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{array}\right)\end{split}$$

本文讨论的主角torch.autograd本质上是一个向量-雅克比乘积(*vector-Jacobian product*)的计算引擎,即计算$v^{T}\cdot J$,而所谓的参数grad_tensor就是这里的$v$。由定义易知,参数grad_tensor需要与Tensor本身有相同的size。通过恰当地设置grad_tensor,容易计算任意的$\frac{\partial y_{m}}{\partial x_{n}}$求导组合。

反向传播过程中一般用来传递上游传来的梯度,从而实现链式法则,简单的推导如下所示:

$$\begin{split}J^{T}\cdot v=\left(\begin{array}{ccc} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}}\\ \vdots & \ddots & \vdots\\ \frac{\partial y_{1}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{array}\right)\left(\begin{array}{c} \frac{\partial l}{\partial y_{1}}\\ \vdots\\ \frac{\partial l}{\partial y_{m}} \end{array}\right)=\left(\begin{array}{c} \frac{\partial l}{\partial x_{1}}\\ \vdots\\ \frac{\partial l}{\partial x_{n}} \end{array}\right)\end{split}$$

(注:这里的计算结果被转置为列向量以方便查看)


注意:梯度是累加的

backward函数本身没有返回值,它计算出来的梯度存放在叶子节点的grad属性中。PyTorch文档中提到,如果grad属性不为空,新计算出来的梯度值会直接加到旧值上面。

为什么不直接覆盖旧的结果呢?这是因为有些Tensor可能有多个输出,那么就需要调用多个backward。叠加的处理方式使得backward不需要考虑之前有没有被计算过导数,只需要加上去就行了,这使得设计变得更简单。因此我们用户在反向传播之前,常常需要用zero_grad函数对导数手动清零,确保计算出来的是正确的结果。

原文地址:https://www.cnblogs.com/cocode/p/10746347.html

时间: 2024-11-09 07:22:10

PyTorch自动微分基本原理的相关文章

附录D——自动微分(Autodiff)

本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法. 1.手工求导 该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导.缺点是对于复杂函数容易出错.幸运的是,这一计算过程可由计算机

ND4J自动微分

一.前言 ND4J从beta2开始就开始支持自动微分,不过直到beta4版本为止,自动微分还只支持CPU,GPU版本将在后续版本中实现. 本篇博客中,我们将用ND4J来构建一个函数,利用ND4J SameDiff构建函数求函数值和求函数每个变量的偏微分值. 二.构建函数 构建函数和分别手动求偏导数 给定一个点(2,3)手动求函数值和偏导,计算如下: f=2+3*4+3=17,f对x的偏导:1+2*2*3=13,f对y的偏导:4+1=5 三.通过ND4J自动微分来求 完整代码 package or

(转)自动微分(Automatic Differentiation)简介——tensorflow核心原理

现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SGD等进行优化更新.手动实现过backprop算法的同学应该可以体会到其中的复杂性和易错性,一个好的框架应该可以很好地将这部分难点隐藏于用户视角,而自动微分技术恰好可以优雅解决这个问题.接下来我们将一起学习这个优雅的技术:-).本文主要来源于陈天奇在华盛顿任教的课程CSE599G1: Deep Lea

Autograd:自动微分

Autograd 1.深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能:在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程. 2.autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作:Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度. 3.Variable主要包含三个属性: data

【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分

在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的框架,这意味着你的后向传播是由你的代码运行方式来定义的,并且每一个迭代都可以是不同的. 下面,让我们使用一些更简单的术语和例子来解释这个问题. 0x01 变量(Variable) autograd.Variable是autograd包的核心类,它封装了一个张量,并支持几乎所有在该张量上定义的操作.一旦完

深度学习框架pytorch入门与实践(一):torch的基本使用

主要内容: 1.tensor的定义 2.tensor与numpy的相互转换 3.tensor使用cuda加速 4.tensor封装成Variable后的使用 # -*- coding: utf-8 -*- """ Created on Thu Aug 8 16:40:47 2019 pytorch快速入门教程 参考书籍:<深度学习框架pytorch:入门与实践> @author: zhaoqidong """ import torch

Pytorch入门教程

记得刚开始学TensorFlow的时候,那给我折磨的呀,我一直在想这个TensorFlow官方为什么搭建个网络还要画什么静态图呢,把简单的事情弄得麻烦死了,直到这几天我开始接触Pytorch,发现Pytorch是就是不用搭建静态图的Tensorflow版本,就想在用numpy一样,并且封装了很多深度学习高级API,numpy数据和Tensor数据相互转换不用搭建会话了,只需要一个转换函数,搭建起了numpy和TensorFlow爱的桥梁. Pytorch自17年推出以来,一度有赶超TensorF

如何计算微分

Ceres为google开源非线性优化库. 计算微分方法 符号微分  Analytic Derivative 数值微分  Numeric Derivative Forward Difference Central Difference Ridders’ Method 自动微分Automatic Derivative 自动微分可以精确快速的算出微分值. 1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyri

python中几种自动微分库

简单介绍下python的几个自动求导工具,tangent.autograd.sympy: 在各种机器学习.深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法.数值微分法.符号微分法.自动微分法,这里分别简单走马观花(hello world式)的介绍下下面几种微分框架: sympy 强大的科学计算库,使用的是符号微分,通过生成符号表达式进行求导:求得的导数不一定为最简的,当函数较为复杂时所生成的表达式树异常复杂: autograd自动微分先将符号微分用于基本的算子,带入数值并保存中间结