[转]7行Python代码的人脸识别

https://blog.csdn.net/wireless_com/article/details/64120516

随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿。AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支。百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码。

import cv2

face_patterns = cv2.CascadeClassifier(r‘/usr/local/opt/opencv3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml‘)

sample_image = cv2.imread(r‘/Users/abel/201612.jpg‘)

faces = face_patterns.detectMultiScale(sample_image,scaleFactor=1.1,minNeighbors=5,minSize=(100, 100))

for (x, y, w, h) in faces:
    cv2.rectangle(sample_image, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.imwrite(r‘/Users/abel/201612_detected.png‘, sample_image);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

第1行 引入 OpenCV

开源是伟大的,使我们视野更开阔,而且不用重复造轮子。这里没有用PIL,再结合特定算法,而是直接使用了OpenCV(http://opencv.org)。OpenCV是一个基于BSD许可发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上,轻量而且高效,用C/C++编写,同时提供了Python、Ruby、MATLAB等接口,实现了图像处理和计算机视觉方面的很多通用算法。

第2行 加载分类器 cv2.CascadeClassifier

CascadeClassifier是Opencv中做人脸检测时候的一个级联分类器,该类中封装的是目标检测机制即滑动窗口机制+级联分类器的方式。数据结构包括Data和FeatureEvaluator两个主要部分。Data中存储的是从训练获得的xml文件中载入的分类器数据;而FeatureEvaluator中是关于特征的载入、存储和计算。这里采用的训练文件是OpenCV中默认提供的haarcascade_frontalface_default.xml。至于Haar,LBP的具体原理,可以参考opencv的相关文档,简单地,可以理解为人脸的特征数据。

第3行 加载目标图片 imread

人脸识别系统一般分为:人脸图像采集、人脸图像预处理、人脸图像特征提取以及匹配与识别。 简化起见,之间读入图片,这是一张去年中生代北京闭门会的集体照。 

第4行 多尺度检测 detectMultiScale

调用 CascadeClassifier 中的调detectMultiScale函数进行多尺度检测,多尺度检测中会调用单尺度的方法detectSingleScale。 
参数说明:

  • scaleFactor 是 图像的缩放因子
  • minNeighbors 为每一个级联矩形应该保留的邻近个数,可以理解为一个人周边有几个人脸
  • minSize 是检测窗口的大小

这些参数都是可以针对图片进行调整的,处理结果返回一个人脸的矩形对象列表。

第5行 和 第6行 为每个人脸画一个框

循环读取人脸的矩形对象列表,获得人脸矩形的坐标和宽高, 然后在原图片中画出该矩形框,调用的是OpenCV的rectangle 方法,其中矩形框的颜色等是可调整的。

第7行 保存检测后的结果

万事具备了,调用imwrite,将检测后的结果保存到指定的位置。结果图如下: 

神秘感不是这7行代码,而是OpenCV中的相关实现,OpenCV的中文网也是一个学习体会的好场所。

因此,7行代码只是个噱头,真正的核心是OpenCV。然后,安装OpenCV环境的时候就是有一些坑,特别记录一下。

原文地址:https://www.cnblogs.com/wincai/p/10286621.html

时间: 2024-10-09 03:25:20

[转]7行Python代码的人脸识别的相关文章

7行Python代码的人脸识别

随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码. import cv2 face_patterns = cv2.CascadeClassifier('/usr/local/opt/opencv3/share/OpenCV/haarcas

25 行 Python 代码实现人脸识别——OpenCV 技术教程

OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征匹配.算法把人脸识别任务分解成数千个小任务,每个都不难处理.这些任务也被称为分类器. 对于类似于人脸的对象,你或许需要不少于 6000 个分类器,每一个都需要成功匹配(当然,有容错率),才能检测出人脸.但这有一个问题:对于人脸识别,算法从左上角开始计算一个个数据

40行代码的人脸识别实践【转】

转自:http://blog.csdn.net/xingchenbingbuyu/article/details/68482838?ref=myrecommend 版权声明:本文为博主原创文章,转载请联系作者取得授权. 目录(?)[+] 40行代码的人脸识别实践 40行代码的人脸识别实践 前言 一点区分 所用工具 Dlib 人脸识别 前期准备 识别流程 代码 运行结果 前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些

Python 使用 face_recognition 人脸识别

Python 使用 face_recognition 人脸识别 官方说明:https://face-recognition.readthedocs.io/en/latest/readme.html 人脸识别 face_recognition 是世界上最简单的人脸识别库. 使用 dlib 最先进的人脸识别功能构建建立深度学习,该模型准确率在99.38%. Python模块的使用 Python可以安装导入 face_recognition 模块轻松操作,对于简单的几行代码来讲,再简单不过了. Pyt

10 行Python 代码,实现 AI 目标检测技术,真给力!

只需10行Python代码,我们就能实现计算机视觉中目标检测. from imageai.Detection import ObjectDetection import os execution_path = os.getcwd() detector = ObjectDetection() detector.setModelTypeAsRetinaNet() detector.setModelPath( os.path.join(execution_path , "resnet50_coco_b

10 行 Python 代码实现模糊查询/智能提示

10 行 Python 代码实现模糊查询/智能提示 1.导语: 模糊匹配可以算是现代编辑器(如 Eclipse 等各种 IDE)的一个必备特性了,它所做的就是根据用户输入的部分内容,猜测用户想要的文件名,并提供一个推荐列表供用户选择. 样例如下: Vim (Ctrl-P) Sublime Text (Cmd-P) '模糊匹配'这是一个极为有用的特性,同时也非常易于实现. 2.问题分析: 我们有一堆字符串(文件名)集合,我们根据用户的输入不断进行过滤,用户的输入可能是字符串的一部分.我们就以下面的

200行Python代码实现2048

200行Python代码实现2048 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面上的程序: LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令 GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器 3. 环境使用 使用GVim编辑器输入实验所需的代码及文件,使用LX终端(LXTerminal)运行所需命令进行操

基于Tkinter用50行Python代码实现简易计算器

Tkinter一般是python自带的,所以代码不需要其他组件,本程序是在python2.7版本实现的. 主要涉及了tkinter的使用,函数定义和调用,匿名函数的使用,类成员函数定义等python基础知识,适合新手学习. 代码如下: from Tkinter import * #创建横条型框架 def frame(root, side): w = Frame(root) w.pack(side = side, expand = YES, fill = BOTH) return w #创建按钮

一起来写2048(160行python代码)

前言: Life is short ,you need python. --Bruce Eckel 我与2048的缘,不是缘于一个玩家,而是一次,一次,重新的ACM比赛.四月份校赛初赛,第一次碰到2048,两周后决赛再次遇到2048,后来五月份的广东省赛,又出现了2048.在这三次比赛过程中,我一次2048都没玩过..全靠队友的解释,直到昨天,我突然想起写个2048吧,于是下了个2048玩了几盘,之后就開始用python来写了,心想就不写界面了,为了简洁. 我对python并不熟悉,可是我在之前