I am basing my code on the images1 example and I have changed
the image ‘partner‘ shape from an ellipse to a rectangle.
The partner rectangle comes out at X,Y and scales and rotates,
but the top left-hand corner of the image is always stuck at
(x,y)=3D(0,0). Only the part of the image that overlaps the=20
rectangle is visible, but that part scales and rotates properly.=20
When there is no overlap, there is no image.
I do not understand much of the the image1 example, so I am
lost as to what might be.the cause. Code is attached.
Would be most grateful for help and/or example code.
void image ( HAGG * h , int x , int y , TCHAR * imgfilename )
{
if ( !loadimage ( h , imgfilename ) ) // sets image details in h
{
return ;
}
agg::rendering_buffer rbuf(h->pixels ,
h->frame_width ,=20
h->frame_height ,=20
-(h->frame_width * h->bytesperpixel) ) ;=20
typedef agg::renderer_base<pixfmt> renderer_base;
typedef agg::renderer_base<pixfmt_pre> =
renderer_base_pre;
typedef agg::renderer_scanline_aa_solid<renderer_base> =
renderer_solid;
pixfmt pixf(rbuf);
pixfmt_pre pixf_pre(rbuf);
renderer_base rb(pixf);
renderer_base_pre rb_pre(pixf_pre);
renderer_solid rs(rb);
rb.clear(agg::rgba(1.0, 1.0, 1.0));
agg::rasterizer_scanline_aa<> pf;
agg::scanline_u8 sl;
IMGINFO * i =3D &h->imgs [ 0 ] ;
double imgwd =3D i->width ; // image width
double imght =3D i->height ; // image height
agg::trans_affine src_mtx;
src_mtx *=3D agg::trans_affine_translation(-x,-y);
src_mtx *=3D agg::trans_affine_rotation(-h->t.angle); // in radians
src_mtx *=3D agg::trans_affine_scaling(h->t.scalex , h->t.scaley);
src_mtx *=3D agg::trans_affine_translation(x,y);
agg::trans_affine img_mtx;
img_mtx *=3D agg::trans_affine_translation(-x,-y);
img_mtx *=3D agg::trans_affine_rotation(-h->t.angle);
img_mtx *=3D agg::trans_affine_scaling(h->t.scalex , h->t.scaley);
img_mtx *=3D agg::trans_affine_translation(x,y);
img_mtx.invert();
typedef agg::span_allocator<color_type> span_alloc_type;
span_alloc_type sa;
typedef agg::span_interpolator_linear<> interpolator_type;
interpolator_type interpolator(img_mtx);
// "hardcoded" bilinear filter
typedef agg::span_image_filter_rgb_bilinear<color_type, =
component_order,=20
interpolator_type> =
span_gen_type;
typedef agg::renderer_scanline_aa<renderer_base_pre, span_gen_type> =
renderer_type;
agg::rendering_buffer rbuf_img(i->pixels ,
(int)imgwd ,=20
(int)imght ,=20
-i->stride ) ;=20
span_gen_type sg(sa,=20
rbuf_img, // rendering buf with image pixels
agg::rgba_pre(0, 0.4, 0, 0.5),
interpolator);
renderer_type ri(rb_pre, sg);
agg::path_storage path; // partner rectangle
path.move_to( x,y);
path.line_to( x+imgwd, y );
path.line_to( x+imgwd, y+imght);
path.line_to( x, y+imght);
path.close_polygon();
agg::conv_transform<agg::path_storage> tr(path, src_mtx);
=20
pf.add_path(tr);
agg::render_scanlines(pf, sl, ri);
}
static void drawimage ( )
{
RECT rt ;
GetClientRect(hwndmain, &rt);
int width =3D rt.right - rt.left;
int height =3D rt.bottom - rt.top;
HAGG * h =3D gethandle ( mybuf , width , height , 4 ) ;
settrans_scale ( h , scale ) ;
settrans_rotate ( h , degrees ) ;
// image ( h , 20,50 , "bmpeivor.bmp" ) ; // does not work
image ( h , 0,0 , "bmpeivor.bmp" ) ; // works
display ( h , hwndmain ) ; // on screen
}
作者的回答:
Transforming images is tricky, especially proper calculation of the affine
matrix.
But first, if you don‘t need to transform it you can directly copy or blend
the image, it will work much faster. See renderer_base<>::copy_from(),
blend_from().
For the transformer there‘s a simple way of calculating the matrix as a
parallelogram, see image_perspective.cpp
// Note that we consruct an affine matrix that transforms
// a parallelogram to a rectangle, i.e., it‘s inverted.
// It‘s actually the same as:
// tr(0, 0, img_width, img_height, para); tr.invert();
agg::trans_affine tr(para, 0, 0, img_width, img_height);
Where "para" is double[6] that defines 3 point of the parallelogram.
困惑:
I have replaced
agg::path_storage path; // partner rectangle
path.move_to( x,y);
path.line_to( x+imgwd, y );
pathmline_to( x+imgwd, y+imght);
path.line_to( x, y+imght);
path.close_polygon();
agg::conv_transform<agg::path_storage> tr(path, src_mtx);
pf.add_path(tr);
agg::render_scanlines(pf, sl, ri);
at the and of my image proc (code of the whole proc is at
the end of my original post (and at the end of this email))
by
double para [ 6 ]
= { 0,100 , 0,0 , 100.0 } ; // 3 points (0,100) (0,0) and (100,0)
agg::trans_affine tr(para, 0, 0, imgwd, imght);
pf.add_path(tr);
agg::render_scanlines(pf, sl, ri);
Q1. is this the right way?
Q2. what should the para points be expressed as functions of
image top-left hand corner, image width and image height, i.e.
x,y, imgwd, imght?
My test cases includes image (x,y)=(0,0), so I defined para points
(0,100), (0,0) and (100,0) just to see what would happen.
but got compilation errors:
..\agg23\include\agg_rasterizer_scanline_aa.h(465) : error C2039: ‘rewind‘ :
is not a member of ‘trans_affine‘
..\agg23\include\agg_trans_affine.h(88) : see declaration of
‘trans_affine‘
and one more very similar: ‘vertex‘ : is not a member of ‘trans_affine‘
作者的回答:
> double para [ 6 ] = { 0,100 , 0,0 , 100,0 } ; // 3 points (0,100) (0,0)
> and (100,0)
> agg::trans_affine mtx(para, 0, 0, imgwd, imght);
> agg::path_storage path; // partner rectangle
> path.move_to( x,y);
> path.line_to( x+imgwd, y );
> path.line_to( x+imgwd, y+imght);
> path.line_to( x, y+imght);
> path.close_polygon();
> agg::conv_transform<agg::path_storage, agg::trans_affine> trans(path,
> mtx);
>
> pf.add_path(trans); // Note you add "trans"
>
> Then, if you want your image to fit exactly your parallelogram path (you
> also may want to do differently!), you need to create a copy of the matrix
> and invert it:
>
> agg::trans_affine img_mtx(mtx);
> img_mtx.invert();
I‘m sorry, Ken, this is not correct; I have confused myself, so, please
discard the code above. :)
So, suppose you have an image of imgwd, imght and a destination
parallelogram. To define the parallelogram you need 3 points, x1,y1 - bottom
left, x2,y2 - bottom right, x3,y3 - top right. The parallelogram can also
define a 2D affine matrix: rotation, scaling, translation and skewing. You
can rasterize your destination parallelogram directly:
agg::rasterizer_scanline_aa<> ras;
ras.move_to_d(x1,y1);
ras.line_to_d(x2,y2);
ras.line_to_d(x3,y3);
ras.line_to_d(x1 + x3 - x2, y1 + y3 - y2);
So that, you can draw a solid parallelogram (well, you can also use the
path_storage if you want).
To map an image to it you need to create the matrix:
double para[6] = {x1,y1,x2,y2,x3,y3};
agg::trans_affine img_mtx(0, 0, imgwd, imght, para);
img_mtx.invert();
Or, which is the same:
double para[6] = {x1,y1,x2,y2,x3,y3};
agg::trans_affine img_mtx(para, 0, 0, imgwd, imght);
The first one construicts a matrix to transform a rectangle to a a
parellelogram, the second one - parallelogram to rectangle. The image
transformer requires namely inverse matrix, so that, you transform your
parallelogram (destination) to rectangle (image).
Technically that‘s it. But you may want to apply additional transformations.
To do that you will need two matrices:
agg::trans_affine master_mtx;
master_mtx *= agg::trans_affine_translation(. . .);
master_mtx *= agg::trans_affine_rotation(. . .);
. . .
agg::rasterizer_scanline_aa<> ras;
agg::path_storage path; // partner rectangle
path.move_to(x1,y1);
path.line_to(x2,y2);
path.line_to(x3,y3);
path.line_to(x1 + x3 - x2, y1 + y3 - y2);
path.close_polygon();
agg::conv_transform<agg::path_storage, agg::trans_affine> trans(path,
master_mtx);
Then you prepare the image matrix:
double para[6] = {x1,y1,x2,y2,x3,y3};
agg::trans_affine img_mtx(0, 0, imgwd, imght, para);
img_mtx *= master_mtx; //!!!!!!!!!!!!! Integrate the master transforms
img_mtx.invert();
ras.add_path(trans);
. . .Render
Now, whatever transformations you use in the master_mtxà they will be
synchronized with the image.
Sorry for the delay, I was kinda busy last time. and besides, I‘m suffering
from constant problems with the Internet (Verizon in NYC sucks, I‘m
switching to cable).
Well, I understand everyone is busy, but could someone else answer the
questions too?
First, you need to understand that a path is the primary thing in AGG.
Without path you can‘t draw anything. So that, to rotate an image you need
to create a respective path as if you wanted to fill this area with a solid
color. And then, you just substitute an image renderer for your solid fill.
Obviously, to transform the whole image you need to create a parallelogram
path (a rectangle in particular). You can do that calculating the points
manually:
ras.move_to_d(x1, y1);
ras.line_to_d(x2, y2);
. . .
You you can use transformations.
Next, trans_affine doesn‘t have any "VertexSource" interface, it can‘t
generate vertices. It can only transform them: affine.transform(&x, &y); To
add affine transformer into your pipeline you also need conv_transform:
double para [ 6 ] = { 0,100 , 0,0 , 100,0 } ; // 3 points (0,100) (0,0) and
(100,0)
agg::trans_affine mtx(para, 0, 0, imgwd, imght);
agg::path_storage path; // partner rectangle
path.move_to( x,y);
path.line_to( x+imgwd, y );
path.line_to( x+imgwd, y+imght);
path.line_to( x, y+imght);
path.close_polygon();
agg::conv_transform<agg::path_storage, agg::trans_affine> trans(path, mtx);
pf.add_path(trans); // Note you add "trans"
Then, if you want your image to fit exactly your parallelogram path (you
also may want to do differently!), you need to create a copy of the matrix
and invert it:
agg::trans_affine img_mtx(mtx);
img_mtx.invert();
Well, I realize that it all is pretty confusing. But this kind of a design
is most flexible.
摘自:http://sourceforge.net/p/vector-agg/mailman/vector-agg-general/?viewmonth=200511&page=0