转:LRU算法

LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的,是根据页面调入内存后的使用情况进行决策了。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU算法就是将最近最久未使用的页面予以淘汰。

可以用一个特殊的栈来保存当前正在使用的各个页面的页面号。当一个新的进程访问某页面时,便将该页面号压入栈顶,其他的页面号往栈底移,如果内存不够,则将栈底的页面号移除。这样,栈顶始终是最新被访问的页面的编号,而栈底则是最近最久未访问的页面的页面号。

如输入以下序列时:4,7,0,7,1,0,1,2,1,2,6

结果为:

4        
4        7        
4        7        0        
4        0        7        
4        0        7        1        
4        7        1        0        
4        7        0        1        
4        7        0        1        2        
4        7        0        2        1        
4        7        0        1        2        
7        0        1        2        6

Java代码实现LRU算法如下:

import java.util.ArrayList;
import java.util.List;  

public class LRU {
    /**
     * 内存块的个数
     */
    public static final int N = 5;
    /**
     * 内存块数组
     */
    Object[] array = new Object[N];
    private int size;  

    public LRU() {
    }
    /**
     * 判断内存区是否为空
     * @return
     */
    public boolean isEmpty() {
        if(size == 0) {
            return true;
        } else {
            return false;
        }
    }
    /**
     * 判断内存区是否达到最大值
     * @return
     */
    public boolean isOutOfBoundary() {
        if(size >=N) {
            return true;
        } else {
            return false;
        }
    }
    /**
     * 查找元素o在数组中的位置
     * @param o
     * @return
     */
    public int indexOfElement(Object o) {
        for(int i=0; i<N; i++) {
            if(o == array[i]) {
                return i;
            }
        }
        return -1;
    }
    /**
     * 有新的数据o需要申请内存
     * @param o
     * @return 移出内存区的数据
     */
    public Object push(Object o) {
        int t = -1;
        if(!isOutOfBoundary() && indexOfElement(o) == -1){
            array[size] = o;
            size ++;
        } else if(isOutOfBoundary() && indexOfElement(o) == -1){
            for(int i=0; i<size-1; i++) {
                array[i] = array[i+1];
            }
            array[size-1] = o;
        } else {
            t = indexOfElement(o);
            for(int i=t; i<size-1; i++) {
                array[i] = array[i+1];
            }
            array[size-1] = o;
        }
        if( -1 == t) {
            return null;
        } else {
            return array[t];
        }
    }
    /**
     * 输出内存区中的各数据
     */
    public void showMemoryBlock() {
        for(int i=0; i<size; i++) {
            System.out.print(array[i] + "\t");
        }
    }  

    /**
     * @param args
     */
    public static void main(String[] args) {
        Integer iter[] = {4,7,0,7,1,0,1,2,1,2,6};
        LRU lru = new LRU();
        for(int i=0; i<iter.length; i++) {
            lru.push(iter[i]);
            lru.showMemoryBlock();
            System.out.println();
        }
    }  

}  

LRU算法也可以用于一些实际的应用中,如你要做一个浏览器,或类似于淘宝客户端的应用的就要用到这个原理。大家都知道浏览器在浏览网页的时候会把下载的图片临时保存在本机的一个文件夹里,下次再访问时就会,直接从本机临时文件夹里读取。但保存图片的临时文件夹是有一定容量限制的,如果你浏览的网页太多,就会一些你最不常使用的图像删除掉,只保留最近最久使用的一些图片。这时就可以用到LRU算法 了,这时上面算法里的这个特殊的栈就不是保存页面的序号了,而是每个图片的序号或大小;所以上面这个栈的元素都用Object类来表示,这样的话这个栈就可以保存的对像了。

时间: 2024-10-14 16:39:06

转:LRU算法的相关文章

缓存淘汰算法--LRU算法

1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的

redis的LRU算法(一)

最近加班比较累,完全不想写作了.. 刚看到一篇有趣的文章,是redis的作者antirez对redis的LRU算法的回顾.LRU算法是Least Recently Used的意思,将最近最少使用的资源丢掉.Redis经常被用作cache,如果能够将不常用的key移除,尽量保留常用的,那内存的利用率就相当高了.当然,LRU也有弱点,考虑下面一种情况: ~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~| ~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~

LRU算法 - LRU Cache

这个是比较经典的LRU(Least recently used,最近最少使用)算法,算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 一般应用在缓存替换策略中.其中的”使用”包括访问get和更新set. LRU算法 LRU是Least Recently Used 近期最少使用算法.内存管理的一种页面置换算法,对于在内存中但又不用的数据快(内存块)叫做LRU,Oracle会根据那些数据属于LRU而将其移出内存而腾出空间来加载另外的数据,一

LRU算法的Python实现

LRU:least recently used,最近最少使用算法.它的使用场景是:在有限的空间中存储对象时,当空间满时,会一定的原则删除原有的对象,常用的原则(算法)有LRU,FIFO,LFU等.在计算机的Cache硬件,以及主存到虚拟内存的页面置换,还有Redis缓存系统中都用到了该算法.我在一次面试和一个笔试时,都遇到过这个问题. LRU的算法是比较简单的,当对key进行访问时(一般有查询,更新,增加,在get()和set()两个方法中实现即可)时,将该key放到队列的最前端(或最后端)就行

关于LRU算法(转载)

原文地址: http://flychao88.iteye.com/blog/1977653 http://blog.csdn.net/cjfeii/article/details/47259519 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2.实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命

Android 图像压缩,和LRU算法使用的推荐链接

近两日,看的关于这些方面的一些教程数十篇,最好的当属google原版的教程了.国内有不少文章是翻译这个链接的. 需要注意的一点是:Android的SDK中的LRU算法在V4包和Util包中各有一个,推荐使用V4包中的. 在此,推荐两个链接: https://developer.android.com/intl/ru/training/displaying-bitmaps/process-bitmap.html http://android-developers.blogspot.jp/2010/

探究redis和memcached的 LRU算法--------redis的LRU的实现

一直对这redis和memcached的两个开源缓存系统的LRU算法感兴趣.今天就打算总结一下这两个LRU算法的实现和区别. 首先要知道什么是LRU算法:LRU是Least Recently Used 近期最少使用算法.相关的资料网上一大堆.http://en.wikipedia.org/wiki/Cache_algorithms#LRU   redis的六种策略 rewriteConfigEnumOption(state,"maxmemory-policy",server.maxme

Android探索之图片缓存&lt;Lru算法&gt;(二)

前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发生的概率呢?之前我们一直在使用SoftReference软引用,SoftReference是一种现在已经不再推荐使用的方式,因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用变得不再可靠,所以今天我们来认识一种新的缓存处理算法

ZeroMq LRU算法中间件

前一段时间2014北京PyCon大会吐槽颇多,所以我就到InfoQ上找了找2013的大会视频,对网络射击手游High Noon 2基于Python的服务器架构的视频挺感兴趣,尤其是游戏服务器中的0 downtime,原理他们底层不是原生的socket, 而是基于ZeroMq的socket,由于ZeroMq的短线自动重连可以满足游戏服务器的热启动,不需要代码层面的热启动,热更新,当更新代码完成后直接重启服务器,之前未处理的请求会继续处理.瞬间觉得非常高大上,于是最近一段时间回家一直研究ZeroMq

LinkedHashMap 和 LRU算法实现

个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> { public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.