最长公共子序列问题—— 动态规划法

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

【问题】 求两字符序列的最长公共字符子序列

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:

(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;

(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;

(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

求解:

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。

我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

注:对于b[i][j]的理解,求解最长公共子序列,最长的子序列的获得可能是在上一步求解基础上X序列方向上递增一个得到的,有可能是Y序列方向上递增一个得到的,也有可能是X序列和Y序列同时递增一个得到的。所以程序中使用了0,1,-1来赋值给b[][]数组,表示当前位置对应的c[][]数组中的最优解是来自于左上方(0)、1(上方)或-1(左方)。

所以问题的的求解过程可以描述为:

求解过程中c[][]数组中的值为:

分析:在数组c中使用了多余的一行c[0]和多余的一列c[][0],这样做的好处是,这一行和这一列赋上初值0之后,会简化后面的计算,因为上面的分析下一步的最优解可能来自于左上、上、左三个方向的值。可以看到c[][]数组中每一个位置上的值都是两个序列长度分别为i和j时最长子序列的值。

程序为:

#include <stdio.h>
#include <string.h>
#define MAXLEN 100

void LCSLength(char *x, char *y, int m, int n, int c[][MAXLEN], int b[][MAXLEN])
{
    int i, j;

    for(i = 0; i <= m; i++) /*冗余的列赋初值为0*/
        c[i][0] = 0;
    for(j = 1; j <= n; j++) /*冗余的行赋初值为0*/
        c[0][j] = 0;
    for(i = 1; i<= m; i++)
    {
        for(j = 1; j <= n; j++)
        {
            if(x[i-1] == y[j-1]) /*来自性质(1)*/
            {
                c[i][j] = c[i-1][j-1] + 1;
                b[i][j] = 0;
            }
            else if(c[i-1][j] >= c[i][j-1]) /*来自性质(2)*/
            {
                c[i][j] = c[i-1][j];
                b[i][j] = 1;
            }
            else /*来自性质(3)*/
            {
                c[i][j] = c[i][j-1];
                b[i][j] = -1;
            }
        }
    }
}

void PrintLCS(int b[][MAXLEN], char *x, int i, int j)
{
    if(i == 0 || j == 0)
        return;
    if(b[i][j] == 0)
    {
        PrintLCS(b, x, i-1, j-1);
        printf("%c ", x[i-1]);
    }
    else if(b[i][j] == 1)
        PrintLCS(b, x, i-1, j);
    else
        PrintLCS(b, x, i, j-1);
}

int main(int argc, char **argv)
{
    char x[MAXLEN] = {"ABCBDAB"};
    char y[MAXLEN] = {"BDCABA"};
    int b[MAXLEN][MAXLEN];
    int c[MAXLEN][MAXLEN];
    int m, n;

    m = strlen(x);
    n = strlen(y);

    LCSLength(x, y, m, n, c, b); /*计算最长公共序列*/

	/*输出最长公共序列,可能有多个解,这里只输出一个*/
	printf("Answer is: ");
	PrintLCS(b, x, m, n);
	printf("\n");

    return 0;
}

程序输出结果:

注意:程序的解可能远不止这一个,因为从图上可以至少再得出BCAB以及BDAB两个解,如果要得出每一个解,需要完善的地方是在c[][]最后一行和最后一列,有许多值都跟c[m][n]也就是其最后一个单元的值一致,这种一致的值也可能是一个最优解(当然也可能是重复的),最优的解一定都在这两条直线上,因为有c[i][j] >= c[i-1][j]、c[i][j] >= c[i][j-1]、c[i][j] > c[i-1][j-1]总是成立。另外在程序中当x[i-1] != y[j-1],本来应该取左方的值或者上方的值,但是左方的值和上方的值有可能是相等的,程序中并没有单独处理,这个时候可以用一个判等的将方向的数组b赋值为2(只要不是0,1,-1即可),表示这个值可以接收来自两个方向,这样才能保证解的完整性,这里就不具体实现了。

参考博文:http://blog.csdn.net/yysdsyl/article/details/4226630

最长公共子序列问题—— 动态规划法

时间: 2024-10-13 14:30:34

最长公共子序列问题—— 动态规划法的相关文章

动态规划法(十)最长公共子序列(LCS)问题

问题介绍 ??给定一个序列\(X=<x_1,x_2,....,x_m>\),另一个序列\(Z=<z_1,z_2,....,z_k>\)满足如下条件时称为X的子序列:存在一个严格递增的X的下标序列\(<i_1,i_2,...,i_k>\),对所有的\(j=1,2,...,k\)满足\(x_{i_j}=z_j.\) ??给定两个序列\(X\)和\(Y\),如果\(Z\)同时是\(X\)和\(Y\)的子序列,则称\(Z\)是\(X\)和\(Y\)的公共子序列.最长公共子序列(

动态规划法——最长公共子序列问题

这个题当初始终看不下去的原因就是当初误解了什么叫最长公共子序列,还一度以为这个题有问题,其实如果明白了什么叫最长公共子序列,也就解决了一半的问题. 什么是最长公共子序列? 什么是最长公共子序列呢?举个简单的例子吧,一个数列S,若分别是两个或多个已知序列的子序列,且是所有符合条件序列中最长的,则S称为已知序列的最长公共子序列. 注意区别: 最长公共子串和最长公共子序列 最长公共子串(Longest Common Substirng)和最长公共子序列(Longest Common Subsequen

最长公共子序列问题

最长公共子序列: 给定一个序列X={x1,x2,x3...xm},另一个序列Z={z1,z2,z3...zk}满足如下条件时称为X的子序列,即存在一个严格递增的X的下标序列<i1,i2...ik>对所有j=1,2...k满足xi=zj.给定两个序列X,Y,如果既是X的子序列又是Y的子序列,那就称为X,Y的公共子序列.最长公共子序列就是所有子序列中最长的一个或几个. 用动态规划法来解最长公共子序列问题: 1.刻画最长公共子序列的特征 令X={x1,x2,x3...xm},Y={y1,y2,y3.

最长公共子序列(LCS)

最长公共子序列,英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列.而最长公共子串(要求连续)和最长公共子序列是不同的.       最长公共子序列是一个十分实用的问题,它可以描述两段文字之间的"相似度",即它们的雷同程度,从而能够用来辨别抄袭.对一段文字进行修改之后,计算改动前后文字的最长公共子序列,将除此子序列外的部分提取出来,

动态规划解决最长公共子序列问题(转)

原文链接 动态规划法 经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题.简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加. 解决思想: 为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法. [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后

动态规划解最长公共子序列问题(转)

 动态规划法 经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题.简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加. 为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法. [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列

最长公共子序列和最长递增子序列

1.最长公共子序列:(x和y是两个数组的长度) f(x,y) = 0                               if(x==0 || y==0) f(x-1,y-1)+1               if(A[x-1]==B[y-1]) max{f(x-1,y), f(x,y-1)} if(A[x-1]!=B[y-1]) 2.最长递增子序列 (1) 最长公共子序列法:排序后与原数组的最长公共子序列. (2) 动态规划法:(时间复杂度O(N^2)) 设长度为N的数组为{a0,a1

动态规划解最长公共子序列问题

动态规划法 经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题.简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加. 为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法. [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给

动态规划求解最长公共子序列问题

LCS是求两个字符串,最长的公共部分,中间可以间隔其他的元素.例如,字符串s1=''mzjawxu'',s2=''xmjyauz'',仔细分析下,大体可以看出最长公共子序列是''mjau'',我们需要一套科学严格的方法来求解.这个问题是DP问题(动态规划问题).动态规划问题:就是当前问题的求解依赖于上一个子问题,上一个子问题又依赖于前一个子问题,子问题无限递归. 记: Xi=﹤x1,?,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀) Yj=﹤y1,?,yj﹥即Y序列的前j个字符 (1≤j≤n