HDU4685 Prince and Princess 完美匹配+强连通

题意:现在有n个王子,m个公主。现在要给他们配对,王子会和他喜欢的一个人结婚,而公主不能做选择。

这题啃得好费劲,有个类似的题目poj1904,那个题目也是给王子与公主配对,但那个是王子公主各n个,且给定了一个完美匹配,然后求每个王子可以做出的选择且不影响最大匹配数目。那题是先建各条喜欢关系的边,然后在由被选择的公主连一条边到与之配对的王子,强连通之后如果一个王子和一个公主在一个强连通分量中,那么他们结合的话,他们的另一半也各自能在强连通中找到另外的匹配,就是符合题意的结果了。

这个题目算是升级版把,我们需要做的先是用匈牙利算法求出最大匹配res,然后建立m-res个虚拟王子与m-res单身公主准备匹配,建立n-res个虚拟公主与n-res个单身王子准备匹配,过程就是虚拟王子要喜欢每一个公主,同样虚拟公主也要被每一个王子喜欢,这样最大匹配一定是n+m-res.求出一个这样的完美匹配,然后再套用poj1904的思路用强连通做。建议先做下1904呦。

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rev(i,a,b) for(int i=(a);i>=(b);i--)
#define clr(a,x) memset(a,x,sizeof a)
#define inf 0x3f3f3f3f
typedef long long LL;
using namespace std;

const int eps=0.00000001;
const int maxn=2005;
const int maxm=maxn*maxn/2;

int first[maxn],link[maxn];
int nex[maxm],w[maxm],v[maxm],u[maxm];
bool done[maxn],g[maxn][maxn];
int n,m,ecnt;

void add_(int a,int b,int c=0)
{
    u[ecnt]=a;
    v[ecnt]=b;
    w[ecnt]=c;
    nex[ecnt]=first[a];
    first[a]=ecnt++;
}
bool dfs(int s)
{
    for(int e=first[s];~e;e=nex[e])
    if(!done[v[e]])
    {
        done[v[e]]=true;
        if(link[v[e]]==-1||dfs(link[v[e]]))
        {
            link[v[e]]=s;
            return true;
        }
    }
    return 0;
}

int hungary(int n)
{
    int ans=0;
    clr(link,-1);
    for(int i=1;i<=n;i++)
    {
        clr(done,false);
        if(dfs(i))ans++;
    }
    return ans;
}
int low[maxn],dfn[maxn],stck[maxn],belong[maxn];
int index,top,scc;
bool ins[maxn];
int num[maxn];
int in[maxn],out[maxn];

void tarjan(int u)
{
    low[u]=dfn[u]=++index;
    stck[top++]=u;
    ins[u]=1;
    for(int e=first[u];~e;e=nex[e])
    {
        if(!dfn[v[e]])
        {
            tarjan(v[e]);
            low[u]=min(low[u],low[v[e]]);
        }
        else if(ins[v[e]])low[u]=min(low[u],dfn[v[e]]);
    }
    if(low[u]==dfn[u])
    {
        int v;
        scc++;
        do
        {
            v=stck[--top];
            ins[v]=false;
            belong[v]=scc;
            num[scc]++;
        }while(v!=u);
    }
}
void solve(int n)
{
    clr(dfn,0);
    clr(ins,0);
    clr(num,0);
    index=scc=top=0;
    for(int i=1;i<=n;i++)
        if(!dfn[i])tarjan(i);
}

int main()
{
    int t,a,b,c,k,cas=1,key=1000;
    scanf("%d",&t);
    while(t--)
    {
        clr(first,-1);ecnt=0;
        clr(g,false);
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&k);
            while(k--)
            {
                scanf("%d",&a);
                if(!g[i][a])
                {
                    g[i][a]=1;
                    add_(i,a+key);
                }
            }
        }
        int res=hungary(n);
        int nn=n+m-res;
        for(int i=n+1;i<=nn;i++)
            for(int j=1;j<=nn;j++)
            add_(i,j+key),g[i][j]=1;
        for(int i=1;i<=n;i++)
            for(int j=m+1;j<=nn;j++)
            add_(i,j+key),g[i][j]=1;
        hungary(nn);

        ecnt=0;clr(first,-1);
        for(int i=1;i<=nn;i++)
            if(link[i+key]!=-1)add_(i+nn,link[i+key]);

        for(int i=1;i<=nn;i++)
            for(int j=1;j<=nn;j++)
            if(g[i][j])add_(i,j+nn);
        solve(2*nn);
        printf("Case #%d:\n",cas++);
        int ans[1000];
        for(int i=1;i<=n;i++)
        {
            int en=0;
            for(int j=1;j<=m;j++)
                if(g[i][j]&&belong[j+nn]==belong[i])ans[en++]=j;
            printf("%d",en);
            for(int i=0;i<en;i++)
                printf(" %d",ans[i]);
            puts("");
        }
    }
    return 0;
}
时间: 2024-12-28 21:10:31

HDU4685 Prince and Princess 完美匹配+强连通的相关文章

HDU4685 Prince and Princess 完美搭配+良好的沟通

意甲冠军:今天,有n王子,m公主.现在给他们配对,与王子会嫁给一个男人,他喜欢.公主无法做出选择. 这标题去咬硬,还有一类似的题目poj1904.那个题目也是给王子与公主配对,但那个是王子公主各n个,且给定了一个完美匹配,然后求每一个王子能够做出的选择且不影响最大匹配数目.那题是先建各条喜欢关系的边.然后在由被选择的公主连一条边到与之配对的王子.强连通之后假设一个王子和一个公主在一个强连通分量中,那么他们结合的话,他们的还有一半也各自能在强连通中找到另外的匹配,就是符合题意的结果了. 这个题目算

强连通+二分匹配(hdu4685 Prince and Princess)

Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1267    Accepted Submission(s): 358 Problem Description There are n princes and m princesses. Princess can marry any prince. B

HDU 4685 Prince and Princess(二分图 + 强连通)

Problem Description There are n princes and m princesses. Princess can marry any prince. But prince can only marry the princess they DO love. For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and

Prince and Princess HDU - 4685(匹配 + 强连通)

Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 2336    Accepted Submission(s): 695 Problem Description There are n princes and m princesses. Princess can marry any prince. B

POJ 1904 King&#39;s Quest强连通分量+二分图完美匹配

题目描述: Description Once upon a time there lived a king and he had N sons. And there were N beautiful girls in the kingdom and the king knew about each of his sons which of those girls he did like. The sons of the king were young and light-headed, so i

HDU 4685 Prince and Princess

Prince and Princess Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 468564-bit integer IO format: %I64d      Java class name: Main There are n princes and m princesses. Princess can marry any prince. But prin

Prince and Princess

hdu4685:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:有n个王子和m个公主,每个王子都会喜欢若干个公主,也就是王子只跟自己喜欢的公主结婚公主就比较悲惨, 跟谁结婚都行,然后输出王子可能的结婚对象. 题解:这一题看了题解之后,也还是只知道是怎么做的,至于为什么那么做还是不懂啊. 解题步奏:首先让王子和喜欢的人之间建立一条边,然后,求一个最大匹配res,然后左边王子加入m-res个虚拟王子,右边加入n-res虚拟公主,所以新加入的王子喜欢

poj1904 二分图匹配+强连通分量

http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. And there were N beautiful girls in the kingdom and the king knew about each of his sons which of those girls he did like. The sons of the king were you

”乳罩图“ 的完美匹配:高温展开与顶点膨胀技巧

本文的目的是通过一个例子来介绍统计力学中精确可解模型的两个经典方法:高温展开和顶点膨胀. 问题是这样的:考虑这样一张非常类似 "bra" 的图: 注意这个图不是平面图!上面两条实线的边与下面两条实线的边分别是粘在一起的,左边两条实线的边和右边的两条实线的边也是分别粘合的:虚线部分不是边,只是用来描述粘合定向的.因此这个图的每个顶点的度数都是 3. 想象它的立体图:这是一个乳罩,已经穿戴在某个美女身上,则上下和左右的实线边相当于系的绳子. 问这个图有多少不同的完美匹配? 答案是 $64$