射频识别技术漫谈(8)——动物标签

动物标签也是工作在TTF模式的ID(Identification)卡。之所以通常称为动物标签,估计是因为一来和识别人的ID卡相区分,二是因为动物不如人听话,人的ID卡可以做成卡片形状拿在手上,而动物不会用四肢持卡,要么做成小玻璃管状用设备注射到皮下,例如小狗小猫等宠物,要么做成耳钉订在耳朵上,例如猪耳标,要么做成环状套在腿上,例如信鸽的脚环。

动物识别标签的通讯方式分为全双工(FDX)和半双工(HDX),全双工是标签回送数据时读卡器产生的射频场不消失,半双工是标签回送数据时读卡器产生的射频场消失。目前市场上以全双工模式居多,下面具体说明全双工模式。

尽管生物物种不停地灭绝,但国际标准的制定者们还是坚定的认为世界上的动物比人多的多,所以全双工模式的动物标签足足有128位,是ID64识别卡的两倍。按顺序依次是11位的头部,64位的识别码,16位的CRC校验,24位的尾部。另外还有13位的控制位。

11位的头部是固定的“00000000001”,用来引导和同步。

64位的识别码是标签的主体部分,包括1位动物识别标志,14位的保留位,1位附加数据标志,10位国家码和38位识别号。动物识别标志表示这个标签是不是动物标签,为1表示是动物标签,为0表示不是动物标签。14位的保留位保留将来使用(RFU)。附加数据标志位表示在64位的识别码之后是否有另外的数据需要接收,1表示有,0表示没有,一般情况此位为0。10位国家码一共可以表示1024个国家,世界上本来就没有这么多国家,于是规定其中的900-998用来表示独立的标签制造商,999表示这个标签是一个测试用的标签,标签的序列号可能不是全国唯一的。38位的识别号表示在一个国家之内的唯一序列号,当然是在国家码不等于999的情况下。

16位的CRC校验用来对前面的64位识别码进行错误检查,看是否在传输的过程中发生了错误。

24位的尾码没有规定什么内容,一般填0。

前面的64位的识别码,16位的CRC校验,24位的尾部共有104位13个字节.为了有效区分和校验这13个字节,规定在每个字节的后面增加一个固定的“1”,共增加了13位,这就是控制位。所以控制位并不是在识别号的最后面,而是在中间13个字节每个字节的后面都有一位控制位“1”。标签回送数据时先回送低位字节,再回送高位字节,每个字节先送最低有效位(LSB),后送最高有效位(MSB),如下图所示:

例如,一个标签的保留位是8003(01 1111 0100 0011),国家编码是156(00 1001
1100),国内唯一序列号是9138702(00 0000 0000 0000 1000 1011 0111 0100 0000
1110),尾部全0(0000 0000 0000 0000 0000 0000),动物标志为1,有附加数据(1),标签的64位识别码是10111110
10000111 00100111 00000000 00000000 10001011 01110010
00001110,即十六进制的0xBE872700008B720E。它的CRC16=0x2C72(00101100
01110010),动物标签一般使用两相(Biphase)码,则其发送波形如下:

再比如,我手头有一个注射式动物标签如下图:



    打开后的样子:



    放在读写器上,从HTRC110的DOUT脚捕捉到波形如下:

则可以写出以下形式

1   0   0   0   0   0   0   0   0   0   0       11个头部

1   1   1   0   0   0   1   0   1               序列号SN7-SN0:  C5H

1   0   1   1   0   0   0   0   0               序列号SN15-SN8:
60H

1   0   1   0   0   0   1   1   0               序列号SN23-SN16:46H

1   1   1   0   1   0   1   0   0               序列号SN31-SN24:D4H

1   0   0   1   0   0   0   0   0               序列号SN37-SN32:20H;国家码C1-C0:00H

1   0   1   1   0   0   0   1   0               国家码C9-C2:62H

1   0   0   0   0   0   0   0   0               保留位留位R6-R0=0,没有附加数据

1   1   0   0   0   0   0   0   0               动物标识=1,保留位R13-R7=0

1   0   1   0   1   0   1   0   1               CRC16校验低位字节:55H

1   1   1   1   0   1   1   1   0               CRC16校验高位字节:EEH

1   0   0   0   0   0   0   0   0               尾部TR7-TR06:
00H

1   0   0   0   0   0   0   0   0               尾部TR15-TR8:
00H

1   0   0   0   0   0   0   0   0               尾部TR23-TR16:00H

    根据以上数据列表,可以知道,该标签的国家代码是392(188H),国内唯一序列号是141000335557(20D44660C5H)。你也看到了,包装上写着呢。

射频识别技术漫谈(8)——动物标签,布布扣,bubuko.com

时间: 2024-10-26 04:14:57

射频识别技术漫谈(8)——动物标签的相关文章

射频识别技术漫谈(9)——动物标签HDX

半双工(HDX,Half Duplex)技术是ISO11784/11785中规定的另一种标签与读写器之间的通讯方式.读写器先打开射频场对标签充电以激活标签,然后关闭磁场,标签在读写器磁场关闭的情况下向读写器传送数据.不过HDX虽然是在动物标签标准中规定,但似乎更多的应用于和动物联系不大的工业识别领域.这也没什么大惊小怪的,标准是标准,实际应用中适合的才是最好的,就像信鸽虽然是动物,但许多信鸽的脚环识别号其实是ID64格式. 与全双工(FDX)相比,HDX 通常识别能力更强,因为HDX读写器的射频

射频识别技术漫谈(6)——通讯协议概述

通讯协议是通讯的双方或多方在交流时遵守的规矩,包括谁先发起通讯,先交流什么,后交流什么,一方如何问,另一方如何答等.在这里通迅的双方指的是读写器和卡片. 首先是谁先发起通讯,很显然有两种,读写器先发言和卡片先发言.前一种叫Reader Talk First,简称为RTF;后一种叫Tag Talk First,简称为TTF. 我们知道,卡片从读写器产生的射频场获得工作时需要的能量,一般认为应该是读写器主动,卡片被动才对,这也是人之常情.所以多数功能稍复杂的卡片都是采用RTF模式,即读写器问,卡片回

射频识别技术漫谈(21)——RC系列射频芯片的天线设计

个人感觉使用RC系列射频芯片开发卡片读写器,主要的关键点有两个,分别涉及硬件和软件.软件上的关键是如何正确设置RC系列射频芯片内部的64个寄存器,硬件上的关键则是RC系列射频芯片的天线设计.天线提供了卡片和读写器交换数据的物理通道,直接决定了读写器的读写性能和读写距离,在此基础上加上对64个寄存器的正确操作,读写器才能正常高效的工作. 在数字电路中设计模拟信号的天线还是比较复杂的,因为天线设计牵扯到好多因素,诸如电磁感应.场强.共振.干扰.Q值等等.好在芯片的制造商为了推销产品,多数都提供了参考

射频识别技术漫谈(11)——Mifare系列卡的共性

Mifare是NXP公司生产的一系列遵守ISO14443A标准的射频卡,包Mifare S50.Mifare S70.Mifare UltraLight.Mifare Pro.Mifare Desfire等,由于Mifare的巨大影响力,业内有时把其它公司生产的遵守ISO14443A标准的射频卡也称为"Mifare",尤其是Mifare S50卡片,几乎就是ISO14443A标准的代言人. 至于"Mifare"这个名字的由来,据说1998年Philips收购了瑞士的

射频识别技术漫谈(23)——ISO15693的载波、调制与编码

射频识别技术中的通讯大多是主从式,主动方一般是读写器,被动方称为"卡片"或"标签".到底是叫"卡片"还是"标签",好像也没有严格的区分.习惯上可以从以下4个方面界定:一是形状,卡片通常体积较大,更像"卡片",标签个头则小的多:二是容量,卡片往往有较大的存储区,可以存储各类应用数据,标签则存储区较小,许多标签只有一个只读的序列号,没有用户存储区:三是安全性,卡片的用户数据存取通常需要密码,标签的数据则往往不需

射频识别技术漫谈(24)——ISO15693的防冲突与传输协议

遵守ISO15693协议的电子标签都有一个8字节共64bit的全球唯一序列号(UID),这个UID一方面可以使全球范围内的标签互相区别,更重要的是可以在多标签同时读写时用于防冲突.8字节UID按权重从高到低标记为UID7--UID0,其中UID7固定为16进制的E0H,UID6是标签制造商的代码,例如NXP的代码为04H,TI的代码为07H;UID5为产品类别代码,比如ICODE SL2 ICS20是01H,Tag-it HF-I Plus Chip为80H,Tag-it HF-I Plus I

射频识别技术漫谈(22)——RC系列射频芯片的寄存器操作

前面提到,RC系列内部64个寄存器的正确操作是软件编写的关键.正确设置寄存器首先要做到与寄存器正确通信,其次是要对寄存器写入正确的值. RC系列射频芯片与微控制器的接口有并口和SPI接口两种类型.显然,并口通讯速度快,需要占用的微控制器I/O多,SPI通讯速度慢,但需要的微控制器I/O口少.这里需要特别说明的是,速度的快慢仅体现在控制单元与RC系类芯片本身的通讯速率上,而不影响芯片与标签或卡片的通讯速度,芯片与标签或卡片的通讯速度是由国际标准规定的,任何芯片都必须遵守国际标准. 并口方式下RC系

射频识别技术漫谈(5)——防冲突

正常情况下读写器某一时刻只能对磁场中的一张射频卡进行读写操作.但是当多张卡片同时进入读写器的射频场时,读写器怎么办呢?读写器需要选出唯一的一张卡片进行读写操作,这就是防冲突. 防冲突机制是非接触式智能卡特有的问题.在接触式智能卡的操作中是不存在冲突的,因为接触式智能卡的读写器有一个专门的卡座,而且一个卡座只能插一张卡片,不存在读写器同时面对两张以上卡片的问题.常见的非接触式智能卡中的防冲突机制主要有以下几种: 1.面向比特的防冲突机制. ISO14443A中使用这种防冲突机制,其原理是基于卡片有

射频识别技术漫谈(17)——射频卡中数据的存储形式

无论什么样的智能卡,不管是接触式的还是非接触式的,存储数据都是一个必须具备的功能.即使是只有一个5字节卡号的ID64格式的卡片也不例外,只不过卡里面的内容在出厂时就被厂家写死了,用户只能读出而不能写入或改变其内容罢了. 数据在存储介质中的存储格式往往和存储介质的容量有很大关系.容量小的存储器如E2PROM,一般以二进制的位(bit)或字节(byte)为单位:容量大的存储介质如硬盘.U盘,一般以文件的形式存储数据,文件有各种类型,文件大小只要别超过物理存储总量,几乎不受限制. 射频卡通常面向特定的