【蓝桥杯】均分纸牌

[问题描述]

  有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。

  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

  例如 N=4,4 堆纸牌数分别为:

  ① 9 ② 8 ③ 17 ④ 6

  移动3次可达到目的:

  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

[输 入]:

  键盘输入文件名。文件格式:

  N(N 堆纸牌,1 <= N <= 100)

  A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

[输 出]:

  输出至屏幕。格式为:

  所有堆均达到相等时的最少移动次数。‘

[输入输出样例]

a.in:

 4

 9 8 17 6

屏慕显示:

 3

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class 均分纸牌 {

	public static List<Integer> list = new ArrayList<Integer>();

	public static int sum = 0;

	public static int count = 0;

	public static void main(String[] args) {
		 Scanner scan = new Scanner(System.in);
		 int n = Integer.parseInt(scan.nextLine());
		 String str = scan.nextLine();
		 String[] strs = str.split(" ");
		 for(int i=0; i<strs.length; i++) {
			 sum += Integer.parseInt(strs[i]);
		 }
		 for(int i=0; i<n; i++) {
			 list.add(Integer.parseInt(strs[i]) - sum/n);
		 }
		 for(int i=1; i<n; i++) {
			 if(list.get(i-1) != 0) {
				 list.set(i, list.get(i)-(0-list.get(i-1)));
				 count ++;
			 }
		 }
		 System.out.println(count);
	}
}

【蓝桥杯】均分纸牌,布布扣,bubuko.com

时间: 2024-10-29 10:46:06

【蓝桥杯】均分纸牌的相关文章

纸牌游戏----蓝桥杯(暴力方法)

蓝桥杯的纸牌游戏,这里我只用了简单的暴力,很费事,其实可以用递归, DP等等来写. 代码: #include <iostream> #include <cstdio> using namespace std; int main() { int a[13]; static int count; int ans = 0; for(a[0]=0; a[0]<=4; a[0]++) { for(a[1]=0; a[1]<=4; a[1]++) { for(a[2]=0; a[2

2015年蓝桥杯省赛B组C/C++(试题+答案)

首先说,这次我是第二次参加蓝桥杯(大学里最后一次),可这次去连个三等都没拿到,有些心灰意冷,比上一次还差, 当时看到成绩出来的时候有些失落,但是跌倒了,再站起来继续跑就可以了.可能是状态不好吧,纯属自我安慰. 接下来我把今年的题目又重新做了一遍,写下了这篇博客,如果也有需要探讨答案的,希望可以有帮助. 第一题: 第1题:统计不含4的数字 题目大意 统计10000至99999中,不包含4的数值个数. 解题分析: 第一种解法: 数学方法,这种是在网上看到的一种解法: 最高位除了0.4不能使用,其余8

蓝桥杯——算法训练之乘积最大

问题描述 今年是国际数学联盟确定的"2000--世界数学年",又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加.活动中,主持人给所有参加活动的选手出了这样一道题目: 设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大. 同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子: 有一个数字串:312, 当N=3,K=1时

2016 第七届蓝桥杯 c/c++ B组省赛真题及解题报告

2016 第七届蓝桥杯 c/c++ B组省赛真题及解题报告 勘误1:第6题第4个 if最后一个条件粗心写错了,答案应为1580. 条件应为abs(a[3]-a[7])!=1,宝宝心理苦啊.!感谢zzh童鞋的提醒. 勘误2:第7题在推断连通的时候条件写错了,后两个if条件中是应该是<=12 落了一个等于号.正确答案应为116. 1.煤球数目 有一堆煤球.堆成三角棱锥形.详细: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第四层10个(排列成三角形). -. 假设一共

1098 均分纸牌

1098 均分纸牌 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动

洛谷 P1031 均分纸牌

P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 例如 N=4,4 堆纸牌数分别为: ①9②8③17④6 移动3次可达到目的: 从 ③ 取

code vs 1098 均分纸牌(贪心)

1098 均分纸牌 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一

蓝桥杯——判定字符的位置。

蓝桥杯——判断字符的位置 题目: 输入一个字符串,编写程序输出该字符串中元音字母的首次出现位置,如果没有元音字母输出0.英语元音字母只有‘a’.‘e’.‘i’.‘o’.‘u’五个. 样例输入: hello样例输出:2 样例输入: apple样例输出:1 样例输入: pmp样例输出:0 java code: import java.util.*;public class Yuanyingzifu {    public static int fun(String str)    {        

蓝桥杯 地宫取宝(12&#39;)

X 国王有一个地宫宝库.是n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大, 小明就可以拿起它(当然,也可以不拿). 当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明. 请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝. [数据格式] 输入一行 3个整数,用空格分开:n m